Person Identification Using Temporal Analysis of Facial Blood Flow
Abstract
:1. Introduction
2. A Facial Blood Flow Biometric System
2.1. Video Capture
2.2. Facial Blood Flow Motion Amplification
2.3. Extraction of Facial Regions of Interest
2.4. Temporal and Spectral Feature Extraction
2.4.1. Temporal Features
2.4.2. Transform-Domain Phase-Invariant Features
2.5. Deep Learning Architectures for Classification
3. Experiments
3.1. Dataset Implementation
3.2. Results of Ablation Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ross, A.A.; Nandakumar, K.; Jain, A.K. Handbook of Multibiometrics; Springer: New York, NY, USA, 2006; p. 220. [Google Scholar]
- Adjabi, I.; Ouahabi, A.; Benzaoui, A.; Taleb-Ahmed, A. Past, Present, and Future of Face Recognition: A Review. Electronics 2020, 9, 1188. [Google Scholar] [CrossRef]
- Taskiran, M.; Kahraman, N.; Erdem, C.E. Face recognition: Past, present and future (a review). Digit. Signal Process. 2020, 106, 102809. [Google Scholar] [CrossRef]
- Oloyede, M.O.; Hancke, G.P.; Myburgh, H.C. A review on face recognition systems: Recent approaches and challenges. Multimed. Tools Appl. 2020, 79, 27891–27922. [Google Scholar] [CrossRef]
- Li, L.; Mu, X.; Li, S.; Peng, H. A Review of Face Recognition Technology. IEEE Access 2020, 8, 139110–139120. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Hu, J.; Zheng, G.; Valli, C. Security and Accuracy of Fingerprint-Based Biometrics: A Review. Symmetry 2019, 11, 141. [Google Scholar] [CrossRef]
- Yao, Z.; Bars, J.M.L.; Charrier, C.; Rosenberger, C. Literature review of fingerprint quality assessment and its evaluation. IET Biom. 2016, 5, 243–251. [Google Scholar] [CrossRef]
- Kaushal, N.; Kaushal, P. Human Identification and Fingerprints: A Review. J. Biom. Biostat. 2011, 2, 123. [Google Scholar] [CrossRef]
- Ghayoumi, M. A review of multimodal biometric systems: Fusion methods and their applications. In Proceedings of the 2015 IEEE/ACIS 14th International Conference on Computer and Information Science (ICIS), Las Vegas, NV, USA, 28 June–1 July 2015; pp. 131–136. [Google Scholar]
- Liang, X.; Yang, J.; Lu, G.; Zhang, D. CompNet: Competitive Neural Network for Palmprint Recognition Using Learnable Gabor Kernels. IEEE Signal Process. Lett. 2021, 28, 1739–1743. [Google Scholar] [CrossRef]
- Kuzu, R.S.; Maiorana, E.; Campisi, P. Vein-Based Biometric Verification Using Densely-Connected Convolutional Autoencoder. IEEE Signal Process. Lett. 2020, 27, 1869–1873. [Google Scholar] [CrossRef]
- Nikose, S.; Meena, H.K. Ear-biometrics for human identification. In Proceedings of the 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), Cochin, India, 2–4 July 2020; pp. 8–13. [Google Scholar]
- Abo-Zahhad, M.; Ahmed, S.M.; Abbas, S.N. A Novel Biometric Approach for Human Identification and Verification Using Eye Blinking Signal. IEEE Signal Process. Lett. 2015, 22, 876–880. [Google Scholar] [CrossRef]
- Alsumari, W.; Hussain, M.; AlShehri, L.; Aboalsamh, H. EEG-Based Person Identification and Authentication Using Deep Convolutional Neural Network. Axioms 2023, 12, 74. [Google Scholar] [CrossRef]
- Wu, H.Y.; Rubinstein, M.; Shih, E.; Guttag, J.; Durand, F.; Freeman, W.T. Eulerian Video Magnification for Revealing Subtle Changes in the World. ACM Trans. Graph. 2012, 31, 65. [Google Scholar] [CrossRef]
- Rubinstein, M. Analysis and Visualization of Temporal Variations in Video. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2013. [Google Scholar]
- Wadhwa, N.; Rubinstein, M.; Durand, F.; Freeman, W. Phase-based Video Motion Processing. ACM Trans. Graph. 2013, 32, 80. [Google Scholar] [CrossRef]
- Lin, Z.; Chen, X.; Chen, G. Cervical Pulse Wave Extraction Based On Video Motion Amplification. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), Nanchang, China, 26–28 March 2021; pp. 784–787. [Google Scholar]
- Śmieja, M.; Mamala, J.; Prażnowski, K.; Ciepliński, T.; Szumilas, L. Motion Magnification of Vibration Image in Estimation of Technical Object Condition-Review. Sensors 2021, 21, 6572. [Google Scholar] [CrossRef] [PubMed]
- Fioriti, V.; Roselli, I.; Tatì, A.; Romano, S.; Canio, G.D. Motion Magnification Analysis for structural monitoring of ancient constructions. Measurement 2018, 129, 375–380. [Google Scholar] [CrossRef]
- Zhang, D.; Zhu, A.; Hou, W.; Liu, L.; Wang, Y. Vision-Based Structural Modal Identification Using Hybrid Motion Magnification. Sensors 2022, 22, 9287. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Ruan, Y.; Lin, J.; Li, C.; Li, C.; Xu, S.; Yan, Z.; Liu, X.; Miao, P.; et al. The Facial Skin Blood Flow Change of Stroke Patients with Facial Paralysis after Peripheral Magnetic Stimulation: A Pilot Study. Brain Sci. 2022, 12, 1271. [Google Scholar] [CrossRef]
- Yoshida, K.; Nishidate, I. Phase Velocity of Facial Blood Volume Oscillation at a Frequency of 0.1 Hz. Front. Physiol. 2021, 12, 627354. [Google Scholar] [CrossRef]
- Fu, G.; Zhou, X.; Wu, S.J.; Nikoo, H.M.; Panesar, D.; Zheng, P.P.; Oatley, K.; Lee, K. Discrete emotions discovered by contactless measurement of facial blood flows. Cogn. Emot. 2022, 36, 1429–1439. [Google Scholar] [CrossRef]
- Buddharaju, P.; Pavlidis, I.; Manohar, C. Face Recognition Beyond the Visible Spectrum. In Advances in Biometrics: Sensors, Algorithms and Systems; Ratha, N.K., Govindaraju, V., Eds.; Springer: London, UK, 2008; pp. 157–180. [Google Scholar]
- Pistola, T.; Papadopoulos, A.; Mitianoudis, N.; Boulgouris, N.V. Biometric Identification using Facial Motion Amplification. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019. [Google Scholar]
- Gkentsidis, K.; Pistola, T.; Mitianoudis, N.; Boulgouris, N.V. Deep Person Identification using Spatiotemporal Facial Motion Amplification. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020. [Google Scholar]
- Roccetti, M.; Gerla, M.; Palazzi, C.E.; Ferretti, S.; Pau, G. First Responders’ Crystal Ball: How to Scry the Emergency from a Remote Vehicle. In Proceedings of the 2007 IEEE International Performance, Computing, and Communications Conference, New Orleans, LA, USA, 11–13 April 2007; pp. 556–561. [Google Scholar]
- Sun, Z.; Torrie, S.A.; Sumsion, A.W.; Lee, D.J. Self-Supervised Facial Motion Representation Learning via Contrastive Subclips. Electronics 2023, 12, 1369. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing; Prentice Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- von Arx, T.; Tamura, K.; Oba, Y.; Lozanoff, S. The Face—A Vascular Perspective. Swiss Dent. J.-SSO-Sci. Clin. Top. 2018, 128, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Ramanan, D. Face detection, pose estimation and landmark localization in the wild. In Proceedings of the Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012. [Google Scholar]
- Cootes, T.; Edwards, G.; Taylor, C. Active Appearance Models. In Proceedings of the European Conference on Computer Vision (ECCV), Freiburg, Germany, 2–6 June 1998. [Google Scholar]
- Bulat, A.; Tzimiropoulos, G. Binarized convolutional landmark localizers for human pose estimation and face alignment with limited resources. In Proceedings of the Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Liu, X. Generic Face Alignment using Boosted Appearance Model. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3D convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Koeppe, A.; Bamer, F.; Markert, B. An intelligent nonlinear meta element for elastoplastic continua: Deep learning using a new Time-distributed Residual U-Net architecture. Comput. Methods Appl. Mech. Eng. 2020, 366, 113088. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015. [Google Scholar]
- Grandvalet, Y.; Canu, S.; Boucheron, S. Noise Injection: Theoretical Prospects. Neural Comput. 1997, 9, 1093–1108. [Google Scholar] [CrossRef]
Forehead Only | All Areas | |||
---|---|---|---|---|
Features | Ensemble 1 | Ensemble 2 | ||
No Augment. | With Augment. | |||
Average Image [26] | 68.76% | 77.53% | 79.72% | 79.79% |
DCT Features [27] | 73.19% | 82.61% | 84.66% | 84.78% |
Temporal Partitioning | 72.54% | 84.51% | 85.56% | 85.6% |
FFT Features | 74.03% | 85.02% | 87.20% | 89.04% |
Model | Accuracy | False Positive Rate |
---|---|---|
2D-CNN VGG version | 71.01% | 2.6% |
3D-CNN VGG version | 81.26% | 1.64% |
Time Distr. CNN VGG version | 85.02% | 1.27% |
Stacked LSTM | 78.05% | 1.62% |
Time Distr. CNN VGG version + LSTM | 79.59% | 1.51% |
Model | No. of Parameters | Model Size (MB) | Inference Time per Batch (s) |
---|---|---|---|
2D-CNN VGG version | 7M | 54.7 | 0.733 |
3D-CNN VGG version | 13.9M | 109.3 | 0.736 |
Time Distr. CNN VGG version | 55.7M | 435.6 | 0.742 |
Stacked LSTM | 14.89M | 116.4 | 0.771 |
Time Distr. CNN VGG version + LSTM | 14.03M | 109.9 | 0.786 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raia, M.; Stogiannopoulos, T.; Mitianoudis, N.; Boulgouris, N.V. Person Identification Using Temporal Analysis of Facial Blood Flow. Electronics 2024, 13, 4499. https://doi.org/10.3390/electronics13224499
Raia M, Stogiannopoulos T, Mitianoudis N, Boulgouris NV. Person Identification Using Temporal Analysis of Facial Blood Flow. Electronics. 2024; 13(22):4499. https://doi.org/10.3390/electronics13224499
Chicago/Turabian StyleRaia, Maria, Thomas Stogiannopoulos, Nikolaos Mitianoudis, and Nikolaos V. Boulgouris. 2024. "Person Identification Using Temporal Analysis of Facial Blood Flow" Electronics 13, no. 22: 4499. https://doi.org/10.3390/electronics13224499
APA StyleRaia, M., Stogiannopoulos, T., Mitianoudis, N., & Boulgouris, N. V. (2024). Person Identification Using Temporal Analysis of Facial Blood Flow. Electronics, 13(22), 4499. https://doi.org/10.3390/electronics13224499