Recent Trend of Rate-Splitting Multiple Access-Assisted Integrated Sensing and Communication Systems
Abstract
:1. Introduction
- We highlight the evolution of mobile communication with existing MA technologies from 1G to 6G. Then, we compare the key features between RSMA and conventional MA techniques such as SDMA and NOMA in terms of both message construction and resource allocation.
- We account for the basic principles of RSMA-assisted ISAC systems, along with key challenges and considerations for implementing RSMA-assisted ISAC networks.
- We put forth the potential research directions of prime candidate technologies that can boost the RSMA-assisted ISAC systems, including non-terrestrial networks (NTNs), reconfigurable intelligent surfaces (RISs), millimeter wave (mmWave) and terahertz (THz) technologies, and vehicle-to-everything (V2X).
2. Advances in Multiple Access Techniques for 6G Mobile Wireless Networks
2.1. Spatial Division Multiple Access
2.2. Non-Orthogonal Multiple Access
2.3. Rate-Splitting Multiple Access
2.4. Comparison of RSMA Technology with Existing Multiple Access Technologies
3. RSMA-Assisted Integrated Sensing and Communication Systems
3.1. RSMA System Model
3.2. RSMA-Assisted ISAC Architecture
3.3. Key Challenges for RSMA-Assisted ISAC
3.3.1. Joint Waveform Design for RSMA-Assisted ISAC
3.3.2. Dual-Functional Beamforming Optimization
3.3.3. Further RSMA-Assisted ISAC Challenges and Considerations
4. Potential Research Directions of RSMA-Assisted ISAC Systems
4.1. Non-Terrestrial Networks
4.2. Reconfigurable Intelligent Surface
4.3. Millimeter Wave and Terahertz Technologies
4.4. Vehicle-to-Everything
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
1G | First Generation |
2G | Second Generation |
3G | Third Generation |
4G | Fourth Generation |
5G | Fifth Generation |
6G | Sixth Generation |
AMPS | Advanced Mobile Phone System |
AP | Access Point |
AWGN | Additive White Gaussian Noise |
BS | Base Station |
CDMA | Code Division Multiple Access |
CF-mMIMO | Cell-Free Massive MIMO |
CPI | Coherent Processing Interval |
CRB | Cramér–Rao Bound |
CSI | Channel State Information |
CV | Computer Vision |
DFRC | Dual-Function Radar Communications |
DoA | Direction of Arrival |
DoD | Direction of Departure |
DoF | Degrees of Freedom |
eMBB | Enhanced Mobile Broadband |
FD | Full-Duplex |
FDMA | Frequency Division Multiple Access |
FIM | Fisher Information Matrix |
GEO | Geostationary Orbit |
GSM | Global System for Mobile Communications |
HAPS | High-Altitude Platform Station |
HRLLC | Hyper-Reliable and Low-Latency Communication |
ISAC | Integrated Sensing and Communication |
JCR | Joint Communications and Radar |
LEO | Low Earth Orbit |
LTE | Long-Term Evolution |
MA | Multiple Access |
MEC | Mobile-Edge Computing |
MEO | Medium Earth orbit |
MIMO | Multiple-Input Multiple-Output |
mMTC | Massive Machine-Type Communication |
mmWave | Millimeter Wave |
MSE | Mean Square Error |
NOMA | Non-Orthogonal Multiple Access |
NTN | Non-Terrestrial Networks |
OFDM | Orthogonal Frequency Division Multiplexing |
OFDMA | Orthogonal Frequency Division Multiple Access |
OMA | Orthogonal Multiple Access |
OTFS | Orthogonal Time Frequency Space |
PAPR | Peak-to-Average Power Ratio |
QoS | Quality of Service |
RadCom | Radar Communications |
RCS | Radar Cross-Section |
RIS | Reconfigurable Intelligent Surface |
RSMA | Rate-Splitting Multiple Access |
SC | Superposition Coding |
SDMA | Spatial Division Multiple Access |
SIC | Successive Interference Cancellation |
SINR | Signal-to-Interference plus Noise Ratio |
SISO | Single-Input Single-Output |
SNR | Signal-to-Noise Ratio |
SNS | Social Network Service |
TDMA | Time Division Multiple Access |
THz | Terahertz |
TN | Terrestrial Network |
UAV | Unmanned Aerial Vehicle |
UE | User Equipment |
UMTS | Universal Mobile Telecommunication System |
URLLC | Ultra-Reliable and Low-Latency Communication |
V2X | Vehicle-To-Everything |
WSR | Weighted Sum Rate |
References
- Lee, H.; Lee, B.; Yang, H.; Kim, J.; Kim, S.; Shin, W.; Shim, B.; Poor, H.V. Towards 6G hyper-connectivity: Vision, challenges, and key enabling technologies. J. Commn. Netw. 2023, 25, 344–354. [Google Scholar] [CrossRef]
- Park, J.; Lee, B.; Choi, J.; Lee, H.; Lee, N.; Park, S.H.; Lee, K.J.; Choi, J.; Chae, S.H.; Jeon, S.W.; et al. Rate-splitting multiple access for 6G networks: Ten promising scenarios and applications. IEEE Netw. 2023, 38, 128–136. [Google Scholar] [CrossRef]
- Clerckx, B.; Mao, Y.; Schober, R.; Poor, H.V. Rate-splitting unifying SDMA, OMA, NOMA, and multicasting in MISO broadcast channel: A simple two-user rate analysis. IEEE Wirel. Commun. Lett. 2020, 9, 349–353. [Google Scholar] [CrossRef]
- Khan, W.U.; Ali, Z.; Lagunas, E.; Mahmood, A.; Asif, M.; Ihsan, A.; Dobre, O.A. Rate splitting multiple access for next generation cognitive radio enabled LEO satellite networks. IEEE Trans. Wirel. Commun. 2023, 22, 8423–8435. [Google Scholar] [CrossRef]
- Lee, B.; Shin, W. Max-Min Fairness Precoder Design for Rate-Splitting Multiple Access: Impact of Imperfect Channel Knowledge. IEEE Trans. Veh. Technol. 2023, 72, 1355–1359. [Google Scholar] [CrossRef]
- ITU. IMT Towards 2030 and Beyond. 2023. Available online: https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2030/Pages/default.aspx (accessed on 30 September 2024).
- ITU. Recommendation ITU-R M.2083-0: IMT Vision—Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond. 2015. Available online: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf (accessed on 30 September 2024).
- Pin Tan, D.K.; He, J.; Li, Y.; Bayesteh, A.; Chen, Y.; Zhu, P.; Tong, W. Integrated sensing and communication in 6G: Motivations, use cases, requirements, challenges and future directions. In Proceedings of the 2021 1st IEEE International Online Symposium on Joint Communication & Sensing (JC & S), Dresden, Germany, 23–24 February 2021; pp. 1–6. [Google Scholar]
- Wei, Z.; Qu, H.; Wang, Y.; Yuan, X.; Wu, H.; Du, Y.; Han, K.; Zhang, N.; Feng, Z. Integrated Sensing and Communication Signals Towards 5G-A and 6G: A Survey. IEEE Internet Things J. 2023, 10, 11068–11092. [Google Scholar] [CrossRef]
- Gao, P.; Lian, L.; Yu, J. Cooperative ISAC with direct localization and rate-splitting multiple access communication: A pareto optimization framework. IEEE J. Sel. Areas Commun. 2023, 41, 1496–1515. [Google Scholar] [CrossRef]
- You, L.; Qiang, X.; Tsinos, C.G.; Liu, F.; Wang, W.; Gao, X.; Ottersten, B. Beam Squint-Aware Integrated Sensing and Communications for Hybrid Massive MIMO LEO Satellite Systems. IEEE J. Sel. Areas Commun. 2022, 40, 2994–3009. [Google Scholar] [CrossRef]
- Kim, S.; Moon, J.; Wu, J.; Shim, B.; Win, M.Z. Vision-Aided Positioning and Beam Focusing for 6G Terahertz Communications. IEEE J. Sel. Areas Commun. 2024, 42, 2503–2519. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, L.; Zhang, W.; Guan, X.; Cai, Y.; Wu, W.; Zhang, R. Channel Estimation for Movable-Antenna MIMO Systems Via Tensor Decomposition. IEEE Wirel. Commun. Lett. 2024, 13, 3089–3093. [Google Scholar] [CrossRef]
- Xu, C.; Clerck, B.; Chen, S.; Mao, Y.; Zhang, J. Rate-splitting multiple access for multi-antenna joint radar and communications. IEEE J. Sel. Top. Signal Process. 2021, 15, 1332–1347. [Google Scholar] [CrossRef]
- Yin, L.; Clerckx, B. Rate-splitting multiple access for dual-functional radar-communication satellite systems. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA, 10–13 April 2022; pp. 1–6. [Google Scholar]
- Liu, Z.; Yin, L.; Shin, W.; Clerckx, B. Max-min fair energy-efficient beam design for quantized Isac Leo satellite systems: A rate-splitting approach. arXiv 2024, arXiv:2402.09253. [Google Scholar]
- Gong, J.; Cheng, W.; Wang, J.; Wang, J. Hybrid Beamforming Design for RSMA-assisted mmWave Integrated Sensing and Communications. arXiv 2024, arXiv:2406.04985. [Google Scholar]
- Dai, L.; Wang, B.; Ding, Z.; Wang, Z.; Chen, S.; Hanzo, L. A survey of non-orthogonal multiple access for 5G. IEEE Commun. Surv. Tutor. 2018, 20, 2294–2323. [Google Scholar] [CrossRef]
- Clerckx, B.; Mao, Y.; Jorswieck, E.A.; Yuan, J.; Love, D.J.; Erkip, E.; Niyato, D. A Primer on Rate-Splitting Multiple Access: Tutorial, Myths, and Frequently Asked Questions. IEEE J. Sel. Areas Commun. 2023, 41, 1265–1308. [Google Scholar] [CrossRef]
- Mao, Y.; Clerckx, B.; Li, V.O.K. Rate-splitting multiple access for downlink communication systems: Bridging, generalizing, and outperforming SDMA and NOMA. EURASIP J. Wirel. Commun. Netw. 2018, 1, 1–54. [Google Scholar] [CrossRef]
- Mishra, A.; Mao, Y.; Dizdar, O.; Clerckx, B. Rate-Splitting Multiple Access for 6G-Part I: Principles, Applications and Future Works. IEEE Commun. Lett. 2022, 26, 2232–2236. [Google Scholar] [CrossRef]
- Yin, L.; Mao, Y.; Dizdar, O.; Clerckx, B. Rate-splitting multiple access for 6G-Part II: Interplay with integrated sensing and communications. IEEE Commun. Lett. 2022, 26, 2237–2241. [Google Scholar] [CrossRef]
- Mao, Y.; Clerckx, B.; Li, V.O. Rate-splitting for multi-antenna non orthogonal unicast and multicast transmission: Spectral and energy efficiency analysis. IEEE Trans. Commun. 2019, 67, 8754–8770. [Google Scholar] [CrossRef]
- Liu, F.; Masouros, C.; Li, A.; Sun, H.; Hanzo, L. MU-MIMO communications with MIMO radar: From co-existence to joint transmission. IEEE Trans. Wirel. Commun. 2018, 17, 2755–2770. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.-F.; Li, A.; Masouros, C.; Eldar, Y.C. Cramér-Rao Bound Optimization for Joint Radar-Communication Beamforming. IEEE Trans. Signal Process. 2022, 70, 240–253. [Google Scholar] [CrossRef]
- Chen, K.; Mao, Y.; Yin, L.; Xu, C.; Huang, Y. Rate-Splitting Multiple Access for Simultaneous Multi-User Communication and Multi-Target Sensing. IEEE Trans. Veh. Technol. 2024, 73, 13909–13914. [Google Scholar] [CrossRef]
- Ghosh, S.; Singh, K.; Jung, H.; Li, C.-P.; Duong, T.Q. On the performance of Rate Splitting Multiple Access for ISAC in Device-to-Multi-Device IoT Communications. IEEE Trans. Cogn. Commun. Netw. 2024. Early Access. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, T.; Liu, F.; Ma, D.; Huangfu, W.; Eldar, Y.C. Next-Generation Multiple Access for Integrated Sensing and Communications. Proc. IEEE 2024. Early Access. [Google Scholar] [CrossRef]
- Liu, F.; Cui, Y.; Masouros, C.; Xu, J.; Han, T.X.; Eldar, Y.C.; Buzzi, S. Integrated Sensing and Communications: Toward Dual-Functional Wireless Networks for 6G and Beyond. IEEE J. Sel. Areas Commun. 2022, 40, 1728–1767. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, G.; Chen, Y.; Xu, J.; Yin, Y. Super-resolution range and velocity estimations with OFDM integrated radar and communications waveform. IEEE Trans. Veh. Technol. 2020, 69, 11659–11672. [Google Scholar] [CrossRef]
- Wei, Z.; Yuan, W.; Li, S.; Yuan, J.; Bharatula, G.; Hadani, R.; Hanzo, L. Orthogonal Time-Frequency Space Modulation: A Promising Next-Generation Waveform. IEEE Wirel. Commun. 2021, 28, 136–144. [Google Scholar] [CrossRef]
- Yuan, W.; Wei, Z.; Li, S.; Schober, R.; Caire, G. Orthogonal Time Frequency Space Modulation-Part III: ISAC and Potential Applications. IEEE Commun. Lett. 2023, 27, 14–18. [Google Scholar] [CrossRef]
- Shi, J.; Hu, X.; Tie, Z.; Chen, X.; Liang, W.; Li, Z. Reliability performance analysis for OTFS modulation based integrated sensing and communication. Digit. Signal Process. 2024, 144, 104280. [Google Scholar] [CrossRef]
- Yuan, W.; Wei, Z.; Li, S.; Yuan, J.; Ng, D.W.K. Integrated Sensing and Communication-Assisted Orthogonal Time Frequency Space Transmission for Vehicular Networks. IEEE J. Sel. Top. Signal Precess. 2021, 15, 1515–1528. [Google Scholar] [CrossRef]
- Hu, X.; Masouros, C.; Liu, F.; Nissel, R. Low-PAPR DFRC MIMO-OFDM waveform design for integrated sensing and communications. In Proceedings of the ICC 2022—IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022; pp. 1599–1604. [Google Scholar]
- Liu, F.; Zhou, L.; Masouros, C.; Li, A.; Luo, W.; Petropulu, A. Toward dual-functional radar–communication systems: Optimal waveform design. IEEE Trans. Signal Process. 2018, 66, 4264–4279. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, F.; Cui, Y.; Yuan, W.; Han, T.X.; Caire, G. On the fundamental tradeoff of integrated sensing and communications under Gaussian channels. IEEE Trans. Inf. Theory. 2023, 69, 5723–5751. [Google Scholar] [CrossRef]
- Yuan, X.; Feng, Z.; Zhang, J.A.; Ni, W.; Liu, R.P.; Wei, Z.; Xu, C. Spatio-Temporal Power Optimization for MIMO Joint Communication and Radio Sensing Systems with Training Overhead. IEEE Trans. Vehicular Techn. 2020, 70, 514–528. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Tian, Z.; Wang, M.; Jia, Y.; Quek, T.Q.S. Joint Rate Splitting and Beamforming Design for RSMA-RIS-Assisted ISAC System. IEEE Wirel. Commun. Lett. 2024, 13, 173–177. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, W.; Wu, Q.; Li, Z.; Zhu, X.; Wu, Q.; Cheng, N. Enhancing Robustness and Security in ISAC Network Design: Leveraging Transmissive Reconfigurable Intelligent Surface with RSMA. arXiv 2024, arXiv:2407.06767. [Google Scholar]
- He, Z.; Xu, W.; Shen, H.; Ng, D.W.K.; Eldar, Y.C.; You, X. Full-Duplex Communication for ISAC: Joint Beamforming and Power Optimization. arXiv 2022, arXiv:2211.00229. [Google Scholar] [CrossRef]
- Liyanaarachchi, S.D.; Barneto, C.B.; Riihonen, T.; Heino, M.; Valkama, M. Joint Multi-User Communication and MIMO Radar Through Full-Duplex Hybrid Beamforming. In Proceedings of the 2021 1st IEEE International Online Symposium on Joint Communications & Sensing (JC&S), Dresden, Germany, 23–24 February 2021; pp. 1–5. [Google Scholar]
- Wen, C.; Huang, Y.; Davidson, T.N. Efficient Transceiver Design for MIMO Dual-Function Radar-Communication Systems. IEEE Trans. Signal Process. 2023, 71, 1786–1801. [Google Scholar] [CrossRef]
- Cong, D.; Guo, S.; Zhang, H.; Ye, J.; Alouini, M.-S. Beamforming Design for Integrated Sensing and Communication Systems with Finite Alphabet Input. IEEE Wirel. Commun. Lett. 2022, 11, 2190–2194. [Google Scholar] [CrossRef]
- Mao, Y.; Dizdar, O.; Clerckx, B.; Schober, R.; Popovski, P.; Poor, H.V. Rate-splitting multiple access: Fundamentals, survey, and future research trends. IEEE Commun. Surveys Tutor. 2022, 24, 2073–2126. [Google Scholar] [CrossRef]
- Dizdar, O.; Kaushik, A.; Clerckx, B.; Masouros, C. Energy Efficient Dual-Functional Radar-Communication: Rate-Splitting Multiple Access, Low-Resolution DACs, and RF Chain Selection. IEEE Open J. Commun. Soc. 2022, 3, 986–1006. [Google Scholar] [CrossRef]
- Han, S.; Xia, H.; Zhou, X.; Li, C. Securing RSMA-Based Communications at Physical Layer. IEEE Netw. 2023, 38, 211–217. [Google Scholar] [CrossRef]
- Yin, L.; Liu, Z.; Bhavani Shankar, M.R.; Alaee-Kerahroodi, M.; Clerckx, B. Integrated sensing and communications enabled low earth orbit satellite systems. IEEE Netw. 2024. Early Access. [Google Scholar] [CrossRef]
- Park, J.; Seong, J.; Ryu, J.; Mao, Y.; Shin, W. A Bistatic ISAC Framework for LEO Satellite Systems: A Rate-Splitting Approach. arXiv 2024, arXiv:2407.08923. [Google Scholar]
- Meng, K.; Wu, Q.; Xu, J.; Chen, W.; Feng, Z.; Schober, R.; Swindlehurst, A.L. UAV-enabled integrated sensing and communication: Opportunities and challenges. IEEE Wirel. Commun. 2023, 31, 97–104. [Google Scholar] [CrossRef]
- Mu, J.; Zhang, R.; Cui, Y.; Gao, N.; Jing, X. UAV Meets Integrated Sensing and Communication: Challenges and Future Directions. IEEE Commun. Mag. 2023, 61, 62–67. [Google Scholar] [CrossRef]
- Yao, B.; Li, R.; Chen, Y.; Wang, L. Coordinated RSMA for Integrated Sensing and Communication in Emergency UAV Systems. arXiv 2024, arXiv:2406.19205. [Google Scholar]
- Yu, Z.; Ren, H.; Pan, C.; Zhou, G.; Wang, B.; Dong, M.; Wang, J. Active RIS aided ISAC systems: Beamforming design and performance analysis. IEEE Trans. Commun. 2024, 72, 1578–1595. [Google Scholar] [CrossRef]
- Xing, Z.; Wang, R.; Yuan, X. Reconfigurable intelligent surface aided physical-layer security enhancement in integrated sensing and communication systems. IEEE Trans. Veh. Technol. 2023, 73, 5179–5196. [Google Scholar] [CrossRef]
- Kim, N.; Kim, G.; Shim, S.; Jang, S.; Song, J.; Lee, B. Key Technologies for 6G-Enabled Smart Sustainable City. Electronics 2024, 13, 268. [Google Scholar] [CrossRef]
- Gao, Z.; Wan, Z.; Zheng, D.; Tan, S.; Masouros, C.; Ng, D.W.K.; Chen, S. Integrated sensing and communication with mmwave massive mimo: A compressed sampling perspective. IEEE Trans. Wirel. Commun. 2023, 22, 1745–1762. [Google Scholar] [CrossRef]
- Singh, J.; Srivastava, S.; Jangannatham, A.K. Energy-Efficient Hybrid Beamforming for Integrated Sensing and Communication Enabled mmWave MIMO Systems. arXiv 2024, arXiv:2406.03737. [Google Scholar]
- Chihi, H.; Safdar, G.A.; Bahja, M. Improved Spectral Efficiency and Connectivity in RSMA based 5G V2X Systems. EAI Endorsed Trans Energy Web. 2022, 9, e3. [Google Scholar] [CrossRef]
- Liu, Q.; Liang, H.; Luo, R.; Liu, Q. Energy-Efficiency Computation Offloading Strategy in UAV Aided V2X Network with Integrated Sensing and Communication. IEEE Open J. Commun. Soc. 2022, 3, 1337–1346. [Google Scholar] [CrossRef]
- Su, Y.; Liu, Y.; Zhou, Y.; Yuan, J.; Cao, H.; Shi, J. Broadband LEO Satellite Communications: Architectures and Key Technologies. IEEE Wirel. Commun. 2019, 26, 55–61. [Google Scholar] [CrossRef]
- Yin, L.; Dizdar, O.; Clerckx, B. Rate-Splitting Multiple Access for Multigroup Multicast Cellular and Satellite Communications: PHY Layer Design and Link-Level Simulations. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Lyu, Z.; Zhu, G.; Xu, J. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication. IEEE Trans. Wirel. Commun. 2022, 22, 2424–2440. [Google Scholar] [CrossRef]
- Liu, X.; Feng, J.; Li, F.; Leung, V.C.M. Downlink Energy Efficiency Maximization for RSMA-UAV Assisted Communications. IEEE Wirel. Commun. Lett. 2024, 13, 98–102. [Google Scholar] [CrossRef]
- Li, Y.; Ni, W.; Tian, H.; Hua, M.; Fan, S. Rate Splitting Multiple Access for Joint Communication and Sensing Systems with unmanned Aerial Vehicles. arXiv 2020, arXiv:2011.07210. [Google Scholar]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable intelligent surfaces: Principles and opportunities. IEEE Commun. Surv. Tutor. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Toka, M.; Lee, B.; Seong, J.; Kaushik, A.; Lee, J.; Lee, J.; Lee, N.; Shin, W.; Poor, H.V. RIS-Empowered LEO satellite networks for 6G: Promising usage scenarios and future directions. IEEE Comm. Mag. 2024, 62, 128–135. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, M.; Liu, R.; Liu, Q. Cramér-Rao Bound Optimization for Active RIS-Empowered ISAC Systems. IEEE Trans. Wirel. Commun. 2024, 23, 11723–11736. [Google Scholar] [CrossRef]
- Asif Haider, M.; Zhang, Y.D.; Aboutanios, E. ISAC system assisted by RIS with sparse active elements. EURASIP J. Adv. Signal Process. 2023, 20, 1–22. [Google Scholar] [CrossRef]
- Wang, W.; Li, L.; Deng, G.; Li, J. A Joint Multiservice Transmission Scheme for RSMA-Aided Cell-Free mMIMO System. IEEE Commun. Lett. 2022, 27, 591–594. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhu, P.; Li, J.; Wang, D.; You, X. On the Spectral and Energy Efficiency of RSMA-Based Cell-Free Systems. IEEE Trans. Veh. Tech. 2024, 73, 17726–17731. [Google Scholar] [CrossRef]
- Jiang, W.; Zhou, Q.; He, J.; Habibi, M.A.; Melnyk, S.; El-Absi, M.; Han, B.; Renzo, M.D.; Schotten, H.D.; Luo, F.L.; et al. Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive Review. IEEE Commun. Surv. Tutor. 2024. Early Access. [Google Scholar] [CrossRef]
- Han, C.; Wu, Y.; Chen, Y.; Wang, G. THz ISAC: A physical-layer perspective of Terahertz integrated sensing and communication. IEEE Commun. Mag. 2024, 62, 102–108. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, X.; Lou, Y.; Yan, F.-G.; Zhou, Z.; Wu, W.; Yuen, C. Channel training-aided target sensing for terahertz integrated sensing and massive MIMO communications. IEEE Internet Things J. 2024. Early Access. [Google Scholar] [CrossRef]
- Kim, S.; Moon, J.; Kim, J.; Ahn, Y.; Kim, D.; Kim, S.; Shim, K.; Shim, B. Role of Sensing and Computer Vision in 6G Wireless Communications. arXiv 2024, arXiv:2405.03945. [Google Scholar] [CrossRef]
- Lei, H.; Zhou, S.; Park, K.H.; Ansari, I.S.; Tang, H.; Alouini, M.S. Outage Analysis of Millimeter Wave RSMA Systems. IEEE Trans. Commun. 2023, 71, 1504–1520. [Google Scholar] [CrossRef]
- Moya Osorio, D.P.; Ahmad, I.; Sanchez, J.D.V.; Gurtov, A.; Scholliers, J.; Kutila, M.; Porambage, P. Towards 6G-Enabled Internet of Vehicles: Security and Privacy. IEEE Open J. Commun. Soc. 2022, 3, 82–105. [Google Scholar] [CrossRef]
- Song, X.; Wang, K.; Lei, L.; Zhao, L.; Li, Y.; Wang, J. Interference Minimization Resource Allocation for V2X Communication Underlaying 5G Cellular Networks. Wirel. Commun. Mob. Comput. 2020, 2020, 2985367. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Yuan, W.; Quek, T.Q. Rate-Splitting Multiple Access-Based Satellite–Vehicular Communication System: A Noncooperative Game Theoretical Approach. IEEE Open J. Commun. Soc. 2023, 4, 430–441. [Google Scholar] [CrossRef]
- Liu, Q.; Luo, R.; Liang, H.; Liu, Q. Energy-efficient joint computation offloading and resource allocation strategy for ISAC-aided 6G V2X networks. IEEE Trans. Green Commun. Netw. 2023, 7, 413–423. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, S.; Kim, N.; Kim, G.; Lee, B. Recent Trend of Rate-Splitting Multiple Access-Assisted Integrated Sensing and Communication Systems. Electronics 2024, 13, 4579. https://doi.org/10.3390/electronics13234579
Jang S, Kim N, Kim G, Lee B. Recent Trend of Rate-Splitting Multiple Access-Assisted Integrated Sensing and Communication Systems. Electronics. 2024; 13(23):4579. https://doi.org/10.3390/electronics13234579
Chicago/Turabian StyleJang, Sukbin, Nahyun Kim, Gayeong Kim, and Byungju Lee. 2024. "Recent Trend of Rate-Splitting Multiple Access-Assisted Integrated Sensing and Communication Systems" Electronics 13, no. 23: 4579. https://doi.org/10.3390/electronics13234579
APA StyleJang, S., Kim, N., Kim, G., & Lee, B. (2024). Recent Trend of Rate-Splitting Multiple Access-Assisted Integrated Sensing and Communication Systems. Electronics, 13(23), 4579. https://doi.org/10.3390/electronics13234579