Vision-Based Prediction of Flashover Using Transformers and Convolutional Long Short-Term Memory Model
Abstract
:1. Introduction
2. Recurrent Neural Networks
2.1. Convolutional Long Short-Term Memory (ConvLSTM)
2.1.1. Transformers
2.1.2. Swin Transformer
2.1.3. SwinLSTM
2.1.4. Model Architecture
3. Results
3.1. Data Collection and Preparation
3.2. SwinLSTM Implementation and Setup
3.3. Qualitative Results
3.4. Quantitative Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Basics of Recurrent Network Models
References
- Statistics Canada. Incident-Based Fire Statistics, by Type of Fire Incident and Type of Structure; Statistics Canada: Ottawa, ON, Canada, 2017. [Google Scholar] [CrossRef]
- Mozaffari, M.H.; Li, Y.; Ko, Y. Real-time detection and forecast of flashovers by the visual room fire features using deep convolutional neural networks. J. Build. Eng. 2023, 64, 105674. [Google Scholar] [CrossRef]
- Peacock, R.D.; Reneke, P.A.; Bukowski, R.W.; Babrauskas, V. Defining flashover for fire hazard calculations. Fire Saf. J. 1999, 32, 331–345. [Google Scholar] [CrossRef]
- Cortés, D.; Gil, D.; Azorín, J. Fire Science Living Lab for Flashover Prediction. Proceedings 2019, 31, 87. [Google Scholar] [CrossRef]
- Mozaffari, M.H.; Li, Y.; Weinfurter, M.; Ko, Y. Study of flashover in full-scale room fires using imaging technologies. In Technical Report; National Research Council of Canada: Statistics Canada: Ottawa, ON, Canada, 2024. [Google Scholar] [CrossRef]
- Kim, H.J.; Lilley, D.G. Flashover: A study of parameter effects on time to reach flashover conditions. J. Propuls. Power 2002, 18, 669–673. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L. Research on flashover prediction method of large-space timber structures in a fire. Materials 2021, 14, 5515. [Google Scholar] [CrossRef] [PubMed]
- Tam, W.C.; Fu, E.Y.; Peacock, R.; Reneke, P.; Wang, J.; Li, J.; Cleary, T. Generating synthetic sensor data to facilitate machine learning paradigm for prediction of building fire hazard. Fire Technol. 2020, 59, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Huyen, A.; Yun, K.; De Baun, S.; Wiggins, S.; Bustos, J.; Lu, T.; Chow, E. Dynamic fire and smoke detection and classification for flashover prediction. In Proceedings of the Pattern Recognition and Tracking XXXII, Online, 12–16 April 2021; SPIE: Bellingham, WA, USA, 2021; Volume 11735, p. 1173502. [Google Scholar] [CrossRef]
- Mozaffari, M.H.; Li, Y.; Ko, Y. Generative AI for Fire Safety. In Applications of Generative AI; Springer: Berlin/Heidelberg, Germany, 2024; pp. 577–600. [Google Scholar] [CrossRef]
- Mozaffari, M.H.; Li, Y.; Ko, Y. Detecting Flashover in a Room Fire based on the Sequence of Thermal Infrared Images using Convolutional Neural Networks. In Proceedings of the Canadian AI, Toronto, ON, Canada, 30 May–3 June 2022. [Google Scholar] [CrossRef]
- Ko, Y.; Hamed Mozaffari, M.; Li, Y. Fire and smoke image recognition. In Intelligent Building Fire Safety and Smart Firefighting; Springer: Berlin/Heidelberg, Germany, 2024; pp. 305–333. [Google Scholar] [CrossRef]
- Yun, K.; Bustos, J.; Lu, T. Predicting rapid fire growth (flashover) using conditional generative adversarial networks. arXiv 2018, arXiv:1801.09804. [Google Scholar] [CrossRef]
- Francis, J.; Chen, A. Observable characteristics of flashover. Fire Saf. J. 2012, 51, 42–52. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Kim, B.; Lee, J. A video-based fire detection using deep learning models. Appl. Sci. 2019, 9, 2862. [Google Scholar] [CrossRef]
- Han, D.; Lee, B. Flame and smoke detection method for early real-time detection of a tunnel fire. Fire Saf. J. 2009, 44, 951–961. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, H.; El Saddik, A. Deep learning in next-frame prediction: A benchmark review. IEEE Access 2020, 8, 69273–69283. [Google Scholar] [CrossRef]
- Mikolov, T.; Karafiát, M.; Burget, L.; Cernockỳ, J.; Khudanpur, S. Recurrent neural network based language model. In Proceedings of the Interspeech, Makuhari, Chiba, Japan, 26–30 September 2010; Volume 2, pp. 1045–1048. [Google Scholar]
- Hochreiter, S. Long Short-Term Memory; Neural Computation MIT-Press: La Jolla, CA, USA, 1997. [Google Scholar]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Vaswani, A. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 6000–6010. [Google Scholar] [CrossRef]
- Li, D.; Chen, Q. Deep reinforced attention learning for quality-aware visual recognition. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Proceedings, Part XVI 16, Glasgow, UK, 23–28 August 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 493–509. [Google Scholar] [CrossRef]
- Huang, Z.; Liang, S.; Liang, M.; Yang, H. Dianet: Dense-and-implicit attention network. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 4206–4214. [Google Scholar] [CrossRef]
- Lin, Z.; Li, M.; Zheng, Z.; Cheng, Y.; Yuan, C. Self-attention convlstm for spatiotemporal prediction. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 11531–11538. [Google Scholar] [CrossRef]
- Tang, S.; Li, C.; Zhang, P.; Tang, R. Swinlstm: Improving spatiotemporal prediction accuracy using swin transformer and lstm. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 13470–13479. [Google Scholar]
- Ajith, M.; Martínez-Ramón, M. Unsupervised segmentation of fire and smoke from infra-red videos. IEEE Access 2019, 7, 182381–182394. [Google Scholar] [CrossRef]
- Muhammad, K.; Ahmad, J.; Mehmood, I.; Rho, S.; Baik, S.W. Convolutional neural networks based fire detection in surveillance videos. IEEE Access 2018, 6, 18174–18183. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 10012–10022. [Google Scholar]
- Kingma, D.P. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Bwalya, A.; Gibbs, E.; Lougheed, G.; Kashef, A. Characterization of Fires in Multi-Suite Residential Dwellings: Final Project Report: Part 1-A Compilation of Post-Flashover Room Fire Test Data; National Research Council of Canada: Ottawa, ON, Canada, 2014. [Google Scholar] [CrossRef]
- Hayou, S.; Doucet, A.; Rousseau, J. On the Impact of the Activation function on Deep Neural Networks Training. In Proceedings of the 36th International Conference on Machine Learning. PMLR, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 2672–2680. [Google Scholar]
Methods | ConvLSTM | SwinLSTM |
---|---|---|
Parameters | 3.8 Mb | 20.1 Mb |
Latency | 27 ms ± 0.12 | 35 ms ± 0.65 |
Model | ConvLSTM | SwinLSTM-B | SwinLSTM-D |
---|---|---|---|
SSIM | 0.97 ± 0.062 | 0.96 ± 0.021 | 0.98 ± 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mozaffari, M.H.; Li, Y.; Hooshyaripour, N.; Ko, Y. Vision-Based Prediction of Flashover Using Transformers and Convolutional Long Short-Term Memory Model. Electronics 2024, 13, 4776. https://doi.org/10.3390/electronics13234776
Mozaffari MH, Li Y, Hooshyaripour N, Ko Y. Vision-Based Prediction of Flashover Using Transformers and Convolutional Long Short-Term Memory Model. Electronics. 2024; 13(23):4776. https://doi.org/10.3390/electronics13234776
Chicago/Turabian StyleMozaffari, M. Hamed, Yuchuan Li, Niloofar Hooshyaripour, and Yoon Ko. 2024. "Vision-Based Prediction of Flashover Using Transformers and Convolutional Long Short-Term Memory Model" Electronics 13, no. 23: 4776. https://doi.org/10.3390/electronics13234776
APA StyleMozaffari, M. H., Li, Y., Hooshyaripour, N., & Ko, Y. (2024). Vision-Based Prediction of Flashover Using Transformers and Convolutional Long Short-Term Memory Model. Electronics, 13(23), 4776. https://doi.org/10.3390/electronics13234776