Method of Mobile Speed Measurement Using Semi-Supervised Masked Auxiliary Classifier Generative Adversarial Networks
Abstract
:1. Introduction
2. System Model
3. Proposed SM-ACGAN
3.1. Design of the SM-ACGAN Architecture
3.2. Design of the Loss Function of the SM-ACGAN Discriminator
3.3. Design of the Loss Function of the SM-ACGAN Generator
3.4. Effective Data Augmentation Using Unlabeled Data and Labeled Fake Data
4. The Training and Validating Processes of SM-ACGAN
5. Simulation Results
- CNN: This stands for convolutional neural network [36]. A CNN is essentially a discriminator made up of convolutional and linear layers, which determines the Doppler spread index of the PSD image provided as input. Table 5 shows the detailed architecture of the CNN. The loss functions of the CNN is defined by Equation (29).
- SSGAN: This stands for a semi-supervised GAN consisting of a discriminator and a generator. Table 5 and Table 6 show the detailed structures of the SSGAN discriminator and the SSGAN generator, respectively. The loss function of the SSGAN discriminator is given by
- ACGAN-SG: This stands for an auxiliary classifier GAN based on spectral normalization and gradient penalty [31]. Table 5 and Table 6 show the detailed architectures of the ACGAN-SG discriminator and the ACGAN-SG generator, respectively. The loss function of the ACGAN-SG discriminator is given by
- MaskedGAN: This stands for a masked GAN consisting of a discriminator and a generator [28]. Table 2 and Table 7 show the detailed architectures of the MaskedGAN discriminator and the MaskedGAN generator, respectively. The loss function of the MaskedGAN discriminator is given by
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saad, W.; Bennis, M.; Chen, M. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems. IEEE Netw. 2020, 34, 134–142. [Google Scholar] [CrossRef]
- Chen, M.; Challita, U.; Saad, W.; Yin, C.; Debbah, M. Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Commun. Surv. Tutor. 2019, 21, 3039–3071. [Google Scholar] [CrossRef]
- Yao, F. Machine learning with limited data. arXiv 2021, arXiv:2101.11461. [Google Scholar] [CrossRef]
- Baddour, K.E.; Beaulieu, N.C. Nonparametric doppler spread estimation for flat fading channels. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, 28 May 2003. [Google Scholar]
- Morocho-Cayamcela, M.E.; Lee, H.; Lim, W. Machine learning for 5G/B5G mobile and wireless communications: Potential, limitations, and future directions. IEEE Access 2019, 7, 137184–137206. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. In Proceedings of the International Conference on Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December 2014; Available online: https://arxiv.org/pdf/1406.2661 (accessed on 1 January 2021).
- Karras, T.; Laine, S.; Aittala, M.; Hellsten, J.; Lehtinen, J.; Aila, T. Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Chang, H.; Zhang, H.; Jiang, L.; Liu, C.; Freeman, W.T. MAGVIT: Masked generative video transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Zhou, P.; Xie, L.; Ni, B.; Tian, Q. CIPS-3D++: End-to-end real-time high-resolution 3D-aware GANs for GAN inversion and stylization. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 11502–11520. [Google Scholar] [CrossRef] [PubMed]
- Tao, M.; Bao, B.K.; Tang, H.; Xu, C. GALIP: Generative adversarial CLIPs for text-to-image synthesis, In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2023.
- Frid-Adar, M.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. Synthetic data augmentation using GAN for improved liver lesion classification. In Proceedings of the IEEE 15th International Symposium on Biomedical Imaging (ISBI), Washington, DC, USA, 4–7 April 2018. [Google Scholar]
- Engel, J.; Agrawal, K.K.; Chen, S.; Gulrajani, I.; Donahue, C.; Roberts, A. GANSynth: Adversarial neural audio synthesis. In Proceedings of the International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Musalamadugu, T.S.; Kannan, H. Generative AI for medical imaging analysis and applications. Future Med. AI 2023, 1, 1–8. [Google Scholar]
- Kwon, H.; Kim, Y.; Yoon, H.; Choi, D. CAPTCHA image generation systems using generative adversarial networks. IEICE Trans. Inf. Syst. 2018, 2, 543–546. [Google Scholar] [CrossRef]
- Karras, T.; Aittala, M.; Hellsten, J.; Laine, S.; Lehtinen, J.; Aila, T. Training generative adversarial networks with limited data. In Proceedings of the 34th Conference on Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 6–12 December 2020. [Google Scholar]
- Lu, H.; Lu, Y.; Jiang, D.; Szabados, S.R.; Sun, S.; Yu, Y. CM-GAN: Stabilizing GAN Training with Consistency Models. In Proceedings of the ICML 2023 Workshop on Architectured Probabilistic Inference & Generative Modeling, Honolulu, HI, USA, 23–29 July 2023. [Google Scholar]
- Fernandez, D.L. GAN Convergence and Stability: Eight Techniques Explained. ML Blog, 17 May 2022. Available online: https://davidleonfdez.github.io/gan/2022/05/17/gan-convergence-stability.html (accessed on 1 January 2023).
- Mangalam, K.; Garg, R. Overcoming mode collapse with adaptive multi adversarial training. In Proceedings of the British Machine Vision Conference (BMVC), Virtual, 22–25 November 2021. [Google Scholar]
- Liu, B.; Zhu, Y.; Song, K.; Elgammal, A. Towards faster and stabilized GAN training for high-fidelity few-shot image synthesis. In Proceedings of the 9th International Conference on Learning Representations (ICLR), Virtual Conference, 3–7 May 2021. [Google Scholar]
- Yang, M.; Wang, Z.; Chi, Z.; Feng, W. WaveGAN: Frequency-aware GAN for high-fidelity few-shot image generation. In Proceedings of the 9th International Conference on Learning Representations (ICLR), Tel Aviv, Israel, 23–27 October 2022. [Google Scholar]
- Zhao, Y.; Chandrasegaran, K.; Abdollahzadeh, M.; Cheung, M.N. Few-shot image generation via adaptation-aware kernel modulation. In Proceedings of the Advances in Neural Information Processing Systems 35 (NeurIPS 2022), New Orleans, LA, USA, 28 November–9 December 2022. [Google Scholar]
- Zhao, Y.; Ding, H.; Huang, H.; Cheung, N.M. A closer look at few-shot image generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022. [Google Scholar]
- Seo, J.; Kang, J.S.; Park, G.M. LFS-GAN: Lifelong few-shot image generation. In Proceedings of the International Conference on Computer Vision Conference (ICCV), Paris, France, 2–6 October 2023. [Google Scholar]
- Hou, L.; Cao, Q.; Yuan, Y.; Zhao, S.; Ma, C.; Pan, S.; Wan, P.; Wang, Z.; Shen, H.; Cheng, X. Augmentation-aware self-supervision for data-efficient GAN training. In Proceedings of the The 37th Annual Conference on Neural Information Processing Systems (NeurIPS), New Orleans, LA, USA, 10–16 December 2023. [Google Scholar]
- Cao, S.; Yin, Y.; Huang, L.; Liu, Y.; Zhao, X.; Zhao, D.; Huang, K. Towards high-resolution image generation with efficient vision transformers. In Proceedings of the International Conference on Computer Vision (ICCV), Paris, France, 2–6 October 2023. [Google Scholar]
- Saxena, D.; Cao, J.; Xu, J.; Kulshrestha, T. Re-GAN: Data-efficient GANs training via architectural reconfiguration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 17–24 June 2023. [Google Scholar]
- Huang, J.; Cui, K.; Guan, D.; Xiao, A.; Zhan, F.; Lu, S.; Liao, S.; Xing, E. Masked generative adversarial networks are data-efficient generation learners. In Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS), New Orleans, LA, USA, 16–19 May 2022. [Google Scholar]
- Ni, Y.; Koniusz, P. CHAIN: Enhancing generalization in data-efficient GANs via lipsCHitz continuity constrAIned normalization. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 17–21 June 2024. [Google Scholar]
- Chen, T.; Cheng, Y.; Gan, Z.; Liu, J.; Wang, Z. Data-efficient GAN training beyond (just) augmentations: A lottery ticket perspective. In Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS), Virtual Conference, 6–14 December 2021. [Google Scholar]
- Liu, S.; Dou, L.; Jin, Q. Improved generative adversarial network for bearing fault diagnosis with imbalanced data. In Proceedings of the Sixth International Conference on Information Communication and Signal Processing (ICICSP), Xi’an, China, 23–25 September 2023. [Google Scholar]
- Miyato, T.; Kataoka, T.; Koyama, M.; Yoshida, Y. Spectral normalization for generative adversarial networks. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved training of Wasserstein GANs, In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 5–7 December 2017.
- Zheng, Y.; Wang, D. An auxiliary classifier generative adversarial network based fault diagnosis for analog circut. IEEE Access 2023, 11, 86824–86833. [Google Scholar] [CrossRef]
- Odena, A. Semi-supervised learning with generative adversarial networks. In Proceedings of the ICML Workshop on Data-Efficient Machine Learning, Marriott Marquis, NY, USA, 24 June 2016. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Abdi, A.; Zhang, H.; Tepedelenlioglu, C. A unified approach to performance analysis of speed estimation techniques in mobile communication. IEEE Trans. Commun. 2008, 56, 126–135. [Google Scholar] [CrossRef]
- Sadowski, J. Estimation of Rician K-factor values in urban terrain. In Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016. [Google Scholar]
- Baddour, K.E.; Beaulieu, C.B. Autoregressive modeling for fading channel simulation. IEEE Trans. Wirel. Commun. 2005, 4, 1650–1662. [Google Scholar] [CrossRef]
- Abdi, A.; Kaveh, M. Parametric modeling and estimation of the spatial characteristics of a source with local scattering. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, FL, USA, 13–17 May 2002. [Google Scholar]
- Zhang, H.; Abdi, A. Nonparametric mobile speed estimation in fading channels: Performance analysis and experimental results. IEEE Trans. Wirel. Commun. 2009, 8, 1683–1692. [Google Scholar] [CrossRef]
- Choi, Y.; Voltz, P.J.; Cassara, F.A. On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels. IEEE Trans. Commun. 2001, 49, 1375–1387. [Google Scholar] [CrossRef]
- Song, S.; Singer, A.C. Pilot-aided OFDM channel estimation in the presence of the guard band. IEEE Trans. Commun. 2007, 55, 1459–1465. [Google Scholar] [CrossRef]
- Ramos, A.R.; Silva, B.C.; Lourenco, M.S.; Teixeira, E.B.; Velez, F.J. Mapping between average SINR and supported throughput in 5G new radio small cell networks. In Proceedings of the 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC), Lisbon, Portugal, 24–27 November 2019. [Google Scholar]
- Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspective. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [Google Scholar] [CrossRef] [PubMed]
- Geron, A. Hands-On Machine Learning With Scikit-Learn and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, 1st ed.; O’Reilly: Sebastopol, CA, USA, 2017. [Google Scholar]
- Yoon, E.; Kim, J.; Yun, U. Doppler spread estimation for an OFDM system with a rayleigh fading channel. IEICE Trans. Commun. 2018, E101-B, 1328–1335. [Google Scholar] [CrossRef]
- LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); ETSI TS 136 508 V14.2.0 (2017-07). Available online: https://www.etsi.org/deliver/etsi_ts/136500_136599/136508/14.02.00_60/ts_136508v140200p.pdf (accessed on 10 June 2020).
- LTE Release 18 Description; TR 21.918 V1.0.0 (2024-07). Available online: https://www.3gpp.org/ftp/Specs/archive/21_series/21.918 (accessed on 10 August 2024).
- Lipton, Z.C.; Elkan, C.; Narayanaswamy, B. Thresholding classifiers to maximize F1 score. arXiv 2014, arXiv:1402.1892. [Google Scholar]
- Farhadpour, S.; Warner, T.A.; Maxwell, A.E. Selecting and interpreting multiclass loss and accuracy assessment metrics for classifications with class imbalance: Guidance and best practices. Remote Sens. 2024, 16, 533. [Google Scholar] [CrossRef]
- Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier GANs. In Proceedings of the 34 th International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Mao, Q.; Lee, H.Y.; Tseng, H.Y.; Ma, S.; Yang, M.H. Mode seeking generative adversarial networks for diverse image synthesis. In Proceedings of the IEEE CVF Conference on Computewr Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 3rd International Conference for Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Zhang, Z. Improved Adam optimizer for deep neural networks. In Proceedings of the IEEE/ACM 26th International Symposium On Quality Of Service (IWQoS), Banff, AB, Canada, 4–6 June 2018. [Google Scholar]
Type-A Block | |
---|---|
Conv2d | |
SpectralNorm | |
LeakyReLU | |
Dropout | |
Type-B Block | |
Conv2d | |
SpectralNorm | |
InstanceNorm2 | |
LeakyReLU | |
Dropout | |
Type-C Block | |
ConvTranspose2d | |
SpectralNorm | |
InstanceNorm2 | |
ReLU | |
Dropout | |
Type-D Block | |
ConvTranspose2d | |
SpectralNorm | |
InstanceNorm2 | |
ReLU | |
Dropout | |
Type-E Block | |
ConvTranspose2d | |
Tanh | |
Type-F Block | |
Linear | |
BatchNorm1d | |
ReLU | |
Dropout |
Component Name | Input Size | Output Size |
---|---|---|
Input Image | Not Available | |
Type-A block (1, 64) | ||
Type-B block (64, 128) | ||
Type-B block (128, 256) | ||
Type-B block (256, 512) | ||
Type-B block (512, 1024) | ||
Reshape operator | ||
Linear layer (4096, 1) | ||
Sigmoid | ||
Mask layer | ||
Linear Layer (4096, 100) |
Component Name | Input Size | Output Size |
---|---|---|
Noise generator | ||
Type-C block (100, 64) | ||
Label one-hot Encoder | ||
Label expander | ||
Tensor concatenator | ||
Type-D block (164, 192) | ||
Type-D block (192, 128) | ||
Type-D block (128, 64) | ||
Type-E block (64, 1) |
Component Name | Input Size | Output Size |
---|---|---|
Input image | Not Available | |
Image flattener | ||
Type-F block (4096, 4096) | ||
Type-F block (4096, 2048) | ||
Type-F block (2048, 1024) | ||
Type-F block (1024, 1024) | ||
Linear Layer (1024, 100) |
Component Name | Input Size | Output Size |
---|---|---|
Input image | Not Available | |
Type-A block (1, 64) | ||
Type-B block (64, 128) | ||
Type-B block (128, 256) | ||
Type-B block (256, 512) | ||
Type-B block (512, 1024) | ||
Reshape operator | ||
Linear layer (4096, 1) | ||
Sigmoid | ||
Linear layer (4096, 100) |
Component Name | Input Size | Output Size |
---|---|---|
Noise generator | ||
Type-C block (100, 64) | ||
Label one-hot encoder | ||
Label expander | ||
Tensor concatenator | ||
Type-D block (164, 192) | ||
Type-D block (192, 128) | ||
Type-D block (128, 64) | ||
Type-E block (64, 1) |
Component Name | Input Size | Output Size |
---|---|---|
Noise generator | ||
Type-C block (100, 64) | ||
Label one-hot encoder | ||
Label expander | ||
Tensor concatenator | ||
Type-D block (164, 192) | ||
Type-D block (192, 128) | ||
Type-D block (128, 64) | ||
Type-E block (64, 1) | ||
Mask layer |
SM-ACGAN | ACGAN-SG | MaskedGAN | SSGAN | CNN | DNN | |
---|---|---|---|---|---|---|
Variance of losses | 0.0043 | 0.0070 | 0.3074 | 0.0024 | 0.0879 | 2.0230 |
Variance of losses | 0.0013 | 0.0175 | 0.0023 | 0.0974 | - | - |
SM-ACGAN | ACGAN-SG | MaskedGAN | SSGAN | CNN | DNN | |
---|---|---|---|---|---|---|
Mean of RMSEs | 8.6331 | 9.0445 | 8.9815 | 8.8999 | 9.50867 | 9.5434 |
Variance of RMSEs | 0.0430 | 0.0813 | 0.1162 | 0.1034 | 0.0492 | 0.0614 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, E.; Kim, S.-Y. Method of Mobile Speed Measurement Using Semi-Supervised Masked Auxiliary Classifier Generative Adversarial Networks. Electronics 2024, 13, 4896. https://doi.org/10.3390/electronics13244896
Yoon E, Kim S-Y. Method of Mobile Speed Measurement Using Semi-Supervised Masked Auxiliary Classifier Generative Adversarial Networks. Electronics. 2024; 13(24):4896. https://doi.org/10.3390/electronics13244896
Chicago/Turabian StyleYoon, Eunchul, and Sun-Yong Kim. 2024. "Method of Mobile Speed Measurement Using Semi-Supervised Masked Auxiliary Classifier Generative Adversarial Networks" Electronics 13, no. 24: 4896. https://doi.org/10.3390/electronics13244896
APA StyleYoon, E., & Kim, S.-Y. (2024). Method of Mobile Speed Measurement Using Semi-Supervised Masked Auxiliary Classifier Generative Adversarial Networks. Electronics, 13(24), 4896. https://doi.org/10.3390/electronics13244896