A Comparison of Backbone and Mesh Clustering Strategies for Collaborative Management of 6G Vehicle-to-Vehicle Exchanges
Abstract
:1. Introduction
- Clustering strategies that lead to the formation of single-headed clusters connected through a backbone. The chain–branch–leaf (CBL) [12] clustering scheme is based on such a strategy.
- Clustering strategies that consist, for each node, of selecting several relays in order to reach their k-hop neighborhood, thus leading to a mesh network that covers every single node through several relays. The multipoint relaying (MPR) [13] technique is part of this group.
2. Related Work
3. Comparison of Backbone-like and Mesh-like Clustering Strategies
3.1. Presentation of TFD-OLSR
3.2. Modeling Parameters and Scenario Definition
3.2.1. Wireless Node Model
WLAN Parameters | OLSR Parameters | ||
---|---|---|---|
Parameter | Value | Parameter | Value |
Standard | 802.11p | Hello Interval | 1 s |
Transmission Frequency | 5 GHz | TC Interval | 2.5 s |
Data rate | 13 Mbps | Neighbor Hold Time | 3.0 s |
Receiver sensitivity | −95 dBm | Topology Hold Time | 7.5 s |
Duplicate Message Hold Time | 15 s |
3.2.2. Mobility Scenarios
Scenario | Car Traffic (veh/h/Direction) | Truck Traffic (veh/h/Direction) |
---|---|---|
S2 | 2000 | 400 |
S3 | 4000 | 800 |
3.2.3. Application Traffic Models
Bidirectional Videoconference Application—
Monodirectional Videoconference Application—
Monodirectional Packet Stream Application—
Road network | 5 km straight, one-way, three lanes |
Vehicle speed distribution | 95% of vehicle speed ranges from 80% to 120% |
of 130 km/h for cars and 110 km/h for light trucks | |
Physical and MAC Layer | IEEE 802.11p |
Routing protocol | TFD-OLSR, CBL-OLSR |
Application traffic type | Bidirectional videoconference application () |
(6000-byte frames every 0.1 s) | |
Monodirectional videoconference application () | |
(12,000-byte frames every 0.1 s) | |
Monodirectional packet stream () | |
(12,000-byte application packets every 0.1 s) | |
Application traffic duration | 50 s |
IP Hop distance estimation | 1 to 4 hops |
4. Results
4.1. Simulation and Measurement Process
4.2. Evolution of Simulation Results with the Number of Hops
4.3. Simulation Results as a Function of Time
4.4. Simulation Result Limitations
4.4.1. Limitation on the Number of Hops
4.4.2. Limitation on the Benchmark of Compared Approaches
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qadir, Z.; Le, K.N.; Saeed, N.; Munawar, H.S. Towards 6G Internet of Things: Recent advances, use cases, and open challenges. ICT Express 2023, 9, 296–312. [Google Scholar] [CrossRef]
- Naik, G.; Choudhury, B.; Park, J.M. IEEE 802.11bd & 5G NR V2X: Evolution of Radio Access Technologies for V2X Communications. IEEE Access 2019, 7, 70169–70184. [Google Scholar]
- Abboud, K.; Omar, H.A.; Zhuang, W. Interworking of DSRC and Cellular Network Technologies for V2X Communications: A Survey. IEEE Trans. Veh. Technol. 2016, 65, 9457–9470. [Google Scholar] [CrossRef]
- Kenney, J.B. Dedicated Short-Range Communications (DSRC) Standards in the United States. Proc. IEEE 2011, 99, 1162–1182. [Google Scholar] [CrossRef]
- IEEE 802.11p-2010; IEEE Standard for Information Technology—Local and Metropolitan Area Networks—Specific Requirements—Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments. IEEE Standard Association: Piscataway, NJ, USA, 2010.
- IEEE 802.11bd-2022; IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Enhancements for Next Generation V2X. IEEE Standard Association: Piscataway, NJ, USA, 2023; pp. 1–144.
- Tripp-Barba, C.; Zaldívar-Colado, A.; Urquiza-Aguiar, L.; Aguilar-Calderón, J.A. Survey on Routing Protocols for Vehicular Ad Hoc Networks Based on Multimetrics. Electronics 2019, 8, 1177. [Google Scholar] [CrossRef]
- Ayyub, M.; Oracevic, A.; Hussain, R.; Khan, A.A.; Zhang, Z. A comprehensive survey on clustering in vehicular networks: Current solutions and future challenges. Ad Hoc Netw. 2022, 124, 102729. [Google Scholar] [CrossRef]
- Baccelli, E. OLSR Trees: A Simple Clustering Mechanism for OLSR. In Proceedings of the Challenges in Ad Hoc Networking, Île de Porquerolles, France, 21–24 June 2005; Al Agha, K., Guérin Lassous, I., Pujolle, G., Eds.; Springer: Boston, MA, USA, 2006; pp. 265–274. [Google Scholar]
- Azizian, M.; Cherkaoui, S.; Hafid, A.S. A distributed cluster based transmission scheduling in VANET. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar]
- Senouci, O.; Harous, S.; Aliouat, Z. Survey on vehicular ad hoc networks clustering algorithms: Overview, taxonomy, challenges, and open research issues. Int. J. Commun. Syst. 2020, 33, e4402. [Google Scholar] [CrossRef]
- Rivoirard, L.; Wahl, M.; Sondi, P.; Berbineau, M.; Gruyer, D. Chain-Branch-Leaf: A clustering scheme for vehicular networks using only V2V communications. Ad Hoc Netw. 2018, 68, 70–84. [Google Scholar] [CrossRef]
- Qayyum, A.; Viennot, L.; Laouiti, A. Multipoint relaying for flooding broadcast messages in mobile wireless networks. In Proceedings of the 35th Annual Hawaii International Conference on System Sciences, Big Island, HI, USA, 10 January 2002; pp. 3866–3875. [Google Scholar]
- Wahl, M.; Sondi, P.; Rivoirard, L. Enhanced CBL clustering performance versus GRP, OLSR and AODV in vehicular Ad Hoc networks. Telecommun. Syst. 2021, 76, 525–540. [Google Scholar] [CrossRef]
- Clausen, T.H.; Jacquet, P. Optimized Link State Routing Protocol (OLSR); RFC 3626. IETF, 2003. Available online: www.ietf.org (accessed on 27 January 2024).
- Graham, R.; Hell, P. On the History of the Minimum Spanning Tree Problem. Ann. Hist. Comput. 1985, 7, 43–57. [Google Scholar] [CrossRef]
- Blum, J.; Ding, M.; Thaeler, A.; Cheng, X. Connected dominating set in sensor networks and MANETs. In Handbook of Combinatorial Optimization: Supplement Volume B; Springer: Berlin/Heidelberg, Germany, 2005; pp. 329–369. [Google Scholar]
- Corson, D.S.M.; Macker, J.P. Mobile Ad hoc Networking (MANET): Routing Protocol Performance Issues and Evaluation Considerations; RFC 2501. IETF, 1999. Available online: www.ietf.org (accessed on 27 January 2024).
- Perkins, C.; Belding-Royer, E.; Das, S. Ad Hoc on-Demand Distance Vector (AODV) Routing; RFC 3561. IETF, 2003. Available online: www.ietf.org (accessed on 27 January 2024).
- Li, Z. Geographic Routing Protocol and Simulation. In Proceedings of the 2009 Second International Workshop on Computer Science and Engineering, Qingdao, China, 28–30 October 2009; Volume 2, pp. 404–407. [Google Scholar]
- Choukri, A.; Habbani, A.; El Koutbi, M. Efficient heuristic based on clustering approach for OLSR. J. Comput. Netw. Commun. 2013, 2013, 597461. [Google Scholar] [CrossRef]
- Alsuhli, G.H.; Khattab, A.; Fahmy, Y.A. Double-head clustering for resilient VANETs. Wirel. Commun. Mob. Comput. 2019, 2019, 2917238. [Google Scholar] [CrossRef]
- Hadded, M.; Muhlethaler, P.; Laouiti, A.; Azzouz Saidane, L. A Novel Angle-Based Clustering Algorithm for Vehicular Ad Hoc Networks. In Proceedings of the Vehicular Ad-Hoc Networks for Smart Cities, Kuala Lumpur, Malaysia, 14 August 2016; Laouiti, A., Qayyum, A., Mohamad Saad, M.N., Eds.; Springer: Singapore, 2017; pp. 27–38. [Google Scholar]
- Yamada, K.; Itokawa, T.; Kitasuka, T.; Aritsugi, M. Cooperative MPR selection to reduce topology control packets in OLSR. In Proceedings of the TENCON 2010—2010 IEEE Region 10 Conference, Fukuoka, Japan, 21–24 November 2010; pp. 293–298. [Google Scholar]
- Gillani, M.; Niaz, H.A.; Ullah, A.; Farooq, M.U.; Rehman, S. Traffic Aware Data Gathering Protocol for VANETs. IEEE Access 2022, 10, 23438–23449. [Google Scholar] [CrossRef]
- Wahl, M.; Sondi, P. Conception et Évaluation de Protocole de Routage Ad Hoc; Domaine de l’Encyclopédie SCIENCES: Réseaux et Communications; ISTE Group: London, UK, 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Devred, T.; Wahl, M.; Sondi, P. A Comparison of Backbone and Mesh Clustering Strategies for Collaborative Management of 6G Vehicle-to-Vehicle Exchanges. Electronics 2024, 13, 572. https://doi.org/10.3390/electronics13030572
Devred T, Wahl M, Sondi P. A Comparison of Backbone and Mesh Clustering Strategies for Collaborative Management of 6G Vehicle-to-Vehicle Exchanges. Electronics. 2024; 13(3):572. https://doi.org/10.3390/electronics13030572
Chicago/Turabian StyleDevred, Thomas, Martine Wahl, and Patrick Sondi. 2024. "A Comparison of Backbone and Mesh Clustering Strategies for Collaborative Management of 6G Vehicle-to-Vehicle Exchanges" Electronics 13, no. 3: 572. https://doi.org/10.3390/electronics13030572
APA StyleDevred, T., Wahl, M., & Sondi, P. (2024). A Comparison of Backbone and Mesh Clustering Strategies for Collaborative Management of 6G Vehicle-to-Vehicle Exchanges. Electronics, 13(3), 572. https://doi.org/10.3390/electronics13030572