Design of Metasurface-Based Photodetector with High-Quality Factor
Abstract
:1. Introduction
2. Design and Working Principles
2.1. Quasi-Bound States in the Continuum (Q-BIC) at the Nanopost Array
2.2. The Control of the Asymmetrical Parameter to Match the Radiation Loss with the Absorption Loss of a Silicon Thin Film
3. Results
3.1. High-Q Photodetector with Polarization Sensing
3.2. High-Q Photodetector for Refractive Index Sensing
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Kravchenko, I.I.; Briggs, D.P.; Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 2014, 5, 5753. [Google Scholar] [CrossRef] [PubMed]
- Tittl, A.; Leitis, A.; Liu, M.; Yesilkoy, F.; Choi, D.-Y.; Neshev, D.N.; Kivshar, Y.S.; Altug, H. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018, 360, 1105–1109. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Jin, R.; Zhou, C.; Li, G.; Xu, L.; Overvig, A.; Deng, F.; Chen, X.; Lu, W.; Alù, A. Ultrahigh-Q guided mode resonances in an All-dielectric metasurface. Nat. Commun. 2023, 14, 3433. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Weber, T.; Bienek, O.; Wester, A.; Huttenhofer, L.; Sharp, I.D.; Maier, S.A.; Tittl, A.; Cortés, E. Catalytic Metasurfaces Empowered by Bound States in the Continuum. ACS Nano 2022, 16, 13057–13068. [Google Scholar] [CrossRef]
- Song, J.-H.; van de Groep, J.; Kim, S.J.; Brongersma, M.L. Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking. Nat. Nanotechnol. 2021, 16, 1224–1230. [Google Scholar] [CrossRef] [PubMed]
- Malek, S.C.; Overvig, A.C.; Alù, A.; Yu, N. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces. Light Sci. Appl. 2022, 11, 246. [Google Scholar] [CrossRef]
- Ji, A.; Song, J.-H.; Li, Q.; Xu, F.; Tsai, C.-T.; Tiberio, R.C.; Cui, B.; Lalanne, P.; Kik, P.G.; Miller, D.A.B.; et al. Quantitative phase contrast imaging with a nonlocal angle-selective metasurface. Nat. Commun. 2022, 13, 7848. [Google Scholar] [CrossRef]
- Born, B.; Lee, S.-H.; Song, J.-H.; Lee, J.Y.; Ko, W.; Brongersma, M.L. Off-axis metasurfaces for folded flat optics. Nat. Commun. 2023, 14, 5602. [Google Scholar] [CrossRef]
- Wang, K.; Gu, T.; Bykov, D.A.; Zhang, X.; Qian, L. Tunable nanolaser based on quasi-BIC in a slanted resonant waveguide grating. Opt. Lett. 2023, 48, 4121–4124. [Google Scholar] [CrossRef]
- Guo, C.; Xiao, M.; Orenstein, M.; Fan, S. Structured 3D linear space–time light bullets by nonlocal nanophotonics. Light Sci. Appl. 2021, 10, 160. [Google Scholar] [CrossRef]
- Piper, J.R.; Fan, S. Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 2014, 1, 347–353. [Google Scholar] [CrossRef]
- Tian, J.; Li, Q.; Belov, P.A.; Sinha, R.K.; Qian, W.; Qiu, M. High-Q all-dielectric metasurface: Super and suppressed optical absorption. ACS Photonics 2020, 7, 1436–1443. [Google Scholar] [CrossRef]
- Overvig, A.C.; Malek, S.C.; Carter, M.J.; Shrestha, S.; Yu, N. Selection rules for quasibound states in the continuum. Phys. Rev. B 2020, 102, 035434. [Google Scholar] [CrossRef]
- Zhou, Z.-X.; Ye, M.-J.; Yu, M.-W.; Yang, J.-H.; Su, K.-L.; Yang, C.-C.; Lin, C.-Y.; Babicheva, V.E.; Timofeev, I.V.; Chen, K.-P. Germanium metasurfaces with lattice kerker effect in near-infrared photodetectors. ACS Nano 2022, 16, 5994–6001. [Google Scholar] [CrossRef]
- Yezekyan, T.; Zenin, V.A.; Thomaschewski, M.; Malureanu, R.; Bozhevolnyi, S.I. Germanium metasurface assisted broadband detectors. Nanophotonics 2023, 12, 2171–2177. [Google Scholar] [CrossRef]
- Đorđević, N.; Schwanninger, R.; Yarema, M.; Koepfli, S.; Yarema, O.; Salamin, Y.; Lassaline, N.; Cheng, B.; Yazdani, N.; Dorodnyy, A.; et al. Metasurface Colloidal Quantum Dot Photodetectors. ACS Photonics 2022, 9, 482–492. [Google Scholar] [CrossRef]
- Sharma, N.; Bar-David, J.; Mazurski, N.; Levy, U. Metasurfaces for Enhancing Light Absorption in Thermoelectric Photodetectors. ACS Photonics 2020, 7, 2468–2473. [Google Scholar] [CrossRef]
- He, J.; Li, C.-Y.; Qi, D.-X.; Cai, Q.; Liu, Y.; Fan, R.-H.; Su, J.; Huo, P.; Xu, T.; Peng, R.; et al. Improving Photoelectric Conversion with Broadband Perovskite Metasurface. Nano Lett. 2022, 22, 6655–6663. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Kang, J.-H.; Mutlu, M.; Park, J.; Park, W.; Goodson, K.E.; Sinclair, R.; Fan, S.; Kik, P.G.; Brongersma, M.L. Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting. Nat. Commun. 2018, 9, 316. [Google Scholar] [CrossRef]
- Kim, S.J.; Lee, C.; Jeon, S.; Park, J.; Kim, S.J. Subwavelength sorting of full-color based on anti-Hermitian metasurfaces. Nanophotonics 2020, 10, 967–974. [Google Scholar] [CrossRef]
- Hong, J.; van de Groep, J.; Lee, N.; Kim, S.J.; Lalanne, P.; Kik, P.G.; Brongersma, M.L. Nonlocal metasurface for circularly polarized light detection. Optica 2023, 10, 134–141. [Google Scholar] [CrossRef]
- Chen, Z.; Weng, Y.; Liu, J.; Guo, N.; Yu, Y.; Xiao, L. Dual-band perfect absorber for a mid-infrared photodetector based on a dielectric metal metasurface. Photon. Res. 2021, 9, 27–33. [Google Scholar] [CrossRef]
- Hainey, M.F.; Mano, T.; Kasaya, T.; Ochiai, T.; Osato, H.; Watanabe, K.; Sugimoto, Y.; Kawazu, T.; Arai, Y.; Shigetou, A.; et al. Near-field resonant photon sorting applied: Dual-band metasurface quantum well infrared photodetectors for gas sensing. Nanophotonics 2020, 9, 4775–4784. [Google Scholar] [CrossRef]
- Mitrofanov, O.; Hale, L.L.; Vabishchevich, P.P.; Luk, T.S.; Addamane, S.J.; Reno, J.L.; Brener, I. Perfectly absorbing dielectric metasurfaces for photodetection. APL Photonics 2020, 5, 101304. [Google Scholar] [CrossRef]
- Yu, J.; Ma, B.; Qin, R.; Ghosh, P.; Qiu, M.; Li, Q. High-Q absorption in all-dielectric photonics assisted by metamirrors. ACS Photonics 2022, 9, 3391–3397. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zhou, S.; Yi, F. Metasurface Photodetectors. Micromachines 2021, 12, 1584. [Google Scholar] [CrossRef]
- Jin, R.; Huang, L.; Zhou, C.; Guo, J.; Fu, Z.; Chen, J.; Wang, J.; Li, X.; Yu, F.; Chen, J.; et al. Toroidal Dipole BIC-Driven Highly Robust Perfect Absorption with a Graphene-Loaded Metasurface. Nano Lett. 2023, 23, 9105–9113. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Duan, J.; Chen, W.; Zhou, C.; Liu, T.; Xiao, S. Controlling light absorption of graphene at critical coupling through magnetic dipole quasi-bound states in the continuum resonance. Phys. Rev. B 2020, 102, 155432. [Google Scholar] [CrossRef]
- Attariabad, A.; Pourziad, A.; Bemani, M. A tunable and compact footprint plasmonic metasurface integrated graphene photodetector using modified omega-shaped nanoantennas. Opt. Laser Technol. 2022, 147, 107660. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998; Volume 3. [Google Scholar]
Ref. | Material | Configuration | Absorption (Simulated) | Operating Wavelength | FWHM | Q Factor | Path of Photoelectrons |
---|---|---|---|---|---|---|---|
[14] | Ge | Ge film and circular nanoposts | 0.6 | 1570 nm | 98 nm | 16 | Ge film |
[15] | Ge | Ge film and circular nanoposts | 1 | 1000–1600 nm | Over 600 nm | NA | Ge film |
[19] | Si, Ag | Si nanowire in Ag substrate | 0.8 | 595 nm, 625 nm | Over 36 nm | 17 | Si nanowire |
[25] | Ge, Si | Cavity with Silicon nanoposts and Ge thin film | 0.92 | 1242 nm | 4.4 nm | 282 | Ge film |
[27] | Graphene, Au | Cavity with silicon nanowire and metallic mirror; graphene is on the nanowire | 1 | 1350 nm | 6 nm | 225 | Graphene |
[28] | Si, Graphene | Graphene on Si circular nanoposts with a nanohole | 0.5 | 1400 nm | 4 nm | 350 | Graphene |
[29] | Graphene, Au | Au split-ring structure on graphene | 1 | 1550 nm | 343 nm | 4 | Graphene |
Our work | Si, Si3N4 | Si3N4 elliptical nanoposts on Si film | 0.7 | 942 nm | 0.82 nm | 1148 | Si film |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ki, Y.G.; Jeon, H.W.; Kim, S.J. Design of Metasurface-Based Photodetector with High-Quality Factor. Electronics 2024, 13, 753. https://doi.org/10.3390/electronics13040753
Ki YG, Jeon HW, Kim SJ. Design of Metasurface-Based Photodetector with High-Quality Factor. Electronics. 2024; 13(4):753. https://doi.org/10.3390/electronics13040753
Chicago/Turabian StyleKi, Yu Geun, Hyeon Woo Jeon, and Soo Jin Kim. 2024. "Design of Metasurface-Based Photodetector with High-Quality Factor" Electronics 13, no. 4: 753. https://doi.org/10.3390/electronics13040753
APA StyleKi, Y. G., Jeon, H. W., & Kim, S. J. (2024). Design of Metasurface-Based Photodetector with High-Quality Factor. Electronics, 13(4), 753. https://doi.org/10.3390/electronics13040753