Multiscale Feature Fusion and Graph Convolutional Network for Detecting Ethereum Phishing Scams
Abstract
:1. Introduction
- (1)
- This study introduces a multiscale feature fusion model to detect phishing scam accounts on Ethereum. This model integrates manually extracted basic features with aggregated temporal transaction information and combines these with the topological structure of the transaction network, yielding comprehensive, practical, and in-depth features. Experimental outcomes demonstrate that this model achieves superior F1-scores, AUC-ROC values, and AUC-PR values in detecting Ethereum phishing scam accounts, surpassing existing methods and baseline models.
- (2)
- The GRU mines all temporal transaction data between target nodes and their first-order neighbors, generating edge embedding representations. An attention mechanism assigns weights to these edge embeddings, aggregating them with structural relationships into the nodes to form time trading features, thereby further enriching the node embedding representations.
- (3)
- Graph convolutional-based deep learning models detect Ethereum phishing scams, categorizing them based on nodes. The efficacy of this model is validated through comparisons with random walks, deep learning, and machine learning approaches.
2. Related Works
3. Methods
3.1. Basic Features
3.2. Edge Embedding Representation
3.3. Time Trading Features
3.4. Phishing Scam Detection Based on GCN
4. Metrics
5. Experiments and Results
5.1. Data Description
5.2. Experimental Environment
5.3. Results
5.3.1. Performance of Different Parameters
5.3.2. Performance of Different Models
5.3.3. Performance of Different Feature Fusion Methods
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roșca, I.; Butnaru, A.-I.; Simion, E. Security of Ethereum Layer 2s. Cryptol. Eprint Arch. 2023, 2023, 124. [Google Scholar]
- Chen, H.; Pendleton, M.; Njilla, L.; Xu, S. A Survey on Ethereum Systems Security: Vulnerabilities, Attacks, and Defenses. ACM Comput. Surv. 2021, 53, 1–43. [Google Scholar] [CrossRef]
- Leng, J.; Ruan, G.; Jiang, P.; Xu, K.; Liu, Q.; Zhou, X.; Liu, C. Blockchain-Empowered Sustainable Manufacturing and Product Lifecycle Management in Industry 4.0: A Survey. Renew. Sustain. Energy Rev. 2020, 132, 110112. [Google Scholar] [CrossRef]
- Mirabelli, G.; Solina, V. Blockchain-Based Solutions for Agri-Food Supply Chains: A Survey. IJSPM 2021, 17, 1. [Google Scholar] [CrossRef]
- Hasselgren, A.; Kralevska, K.; Gligoroski, D.; Pedersen, S.A.; Faxvaag, A. Blockchain in Healthcare and Health Sciences-A Scoping Review. Int. J. Med. Inform. 2019, 134, 104040. [Google Scholar] [CrossRef]
- Andoni, M.; Robu, V.; Flynn, D.; Abram, S.; Geach, D.; Jenkins, D.; McCallum, P.; Peacock, A. Blockchain Technology in the Energy Sector: A Systematic Review of Challenges and Opportunities. Renew. Sustain. Energy Rev. 2019, 100, 143–174. [Google Scholar] [CrossRef]
- Wen, T.; Xiao, Y.; Wang, A.; Wang, H. A Novel Hybrid Feature Fusion Model for Detecting Phishing Scam on Ethereum Using Deep Neural Network. Expert Syst. Appl. 2023, 211, 118463. [Google Scholar] [CrossRef]
- Conti, M.; Kumar, E.S.; Lal, C.; Ruj, S. A Survey on Security and Privacy Issues of Bitcoin. IEEE Commun. Surv. Tutor. 2018, 20, 3416–3452. [Google Scholar] [CrossRef]
- Li, S.; Gou, G.; Liu, C.; Hou, C.; Li, Z.; Xiong, G. TTAGN: Temporal Transaction Aggregation Graph Network for Ethereum Phishing Scams Detection. In Proceedings of the ACM Web Conference 2022; ACM: Virtual Event, Lyon, France, 25 April 2022; pp. 661–669. [Google Scholar]
- Wang, Z.; Jin, H.; Dai, W.; Choo, K.-K.R.; Zou, D. Ethereum Smart Contract Security Research: Survey and Future Research Opportunities. Front. Comput. Sci. 2021, 15, 152802. [Google Scholar] [CrossRef]
- Wenhua, Z.; Qamar, F.; Abdali, T.-A.N.; Hassan, R.; Jafri, S.T.A.; Nguyen, Q.N. Blockchain Technology: Security Issues, Healthcare Applications, Challenges and Future Trends. Electronics 2023, 12, 546. [Google Scholar] [CrossRef]
- Naqvi, B.; Perova, K.; Farooq, A.; Makhdoom, I.; Oyedeji, S.; Porras, J. Mitigation Strategies against the Phishing Attacks: A Systematic Literature Review. Comput. Secur. 2023, 132, 103387. [Google Scholar] [CrossRef]
- Goenka, R.; Chawla, M.; Tiwari, N. A Comprehensive Survey of Phishing: Mediums, Intended Targets, Attack and Defence Techniques and a Novel Taxonomy. Int. J. Inf. Secur. 2023, 1–30. [Google Scholar] [CrossRef]
- Febriyani, W.; Fathia, D.; Widjajarto, A.; Lubis, M. Security Awareness Strategy for Phishing Email Scams: A Case Study One of a Company in Singapore. JOIV Int. J. Inform. Vis. 2023, 7, 808–814. [Google Scholar] [CrossRef]
- Liu, S.; Cui, B.; Hou, W. A Survey on Blockchain Abnormal Transaction Detection. In Blockchain and Trustworthy Systems; Communications in Computer and Information Science; Chen, J., Wen, B., Chen, T., Eds.; Springer Nature: Singapore, 2024; Volume 1896, pp. 211–225. ISBN 978-981-9981-00-7. [Google Scholar]
- Wan, Y.; Xiao, F.; Zhang, D. Early-Stage Phishing Detection on the Ethereum Transaction Network. Soft Comput. 2023, 27, 3707–3719. [Google Scholar] [CrossRef]
- Wang, J.; Chen, P.; Yu, S.; Xuan, Q. TSGN: Transaction Subgraph Networks for Identifying Ethereum Phishing Accounts. In Blockchain and Trustworthy Systems; Communications in Computer and Information Science; Dai, H.-N., Liu, X., Luo, D.X., Xiao, J., Chen, X., Eds.; Springer: Singapore, 2021; Volume 1490, pp. 187–200. ISBN 9789811679926. [Google Scholar]
- Farrugia, S.; Ellul, J.; Azzopardi, G. Detection of Illicit Accounts over the Ethereum Blockchain. Expert Syst. Appl. 2020, 150, 113318. [Google Scholar] [CrossRef]
- Chen, W.; Guo, X.; Chen, Z.; Zheng, Z.; Lu, Y. Phishing Scam Detection on Ethereum: Towards Financial Security for Blockchain Ecosystem. IJCAI 2020, 7, 4456–4462. [Google Scholar]
- Yuan, Q.; Huang, B.; Zhang, J.; Wu, J.; Zhang, H.; Zhang, X. Detecting Phishing Scams on Ethereum Based on Transaction Records. In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020; pp. 1–5. [Google Scholar]
- Chen, L.; Peng, J.; Liu, Y.; Li, J.; Xie, F.; Zheng, Z. Phishing Scams Detection in Ethereum Transaction Network. ACM Trans. Internet Technol. 2021, 21, 1–16. [Google Scholar] [CrossRef]
- Abdelhamid, N.; Ayesh, A.; Thabtah, F. Phishing Detection Based Associative Classification Data Mining. Expert Syst. Appl. 2014, 41, 5948–5959. [Google Scholar] [CrossRef]
- Karim, A.; Shahroz, M.; Mustofa, K.; Belhaouari, S.B.; Joga, S.R.K. Phishing Detection System Through Hybrid Machine Learning Based on URL. IEEE Access 2023, 11, 36805–36822. [Google Scholar] [CrossRef]
- Zouina, M.; Outtaj, B. A Novel Lightweight URL Phishing Detection System Using SVM and Similarity Index. Hum. Cent. Comput. Inf. Sci. 2017, 7, 17. [Google Scholar] [CrossRef]
- Moghimi, M.; Varjani, A.Y. New Rule-Based Phishing Detection Method. Expert Syst. Appl. 2016, 53, 231–242. [Google Scholar] [CrossRef]
- Wen, H.; Fang, J.; Wu, J.; Zheng, Z. Transaction-Based Hidden Strategies against General Phishing Detection Framework on Ethereum. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5. [Google Scholar]
- Grover, A.; Leskovec, J. Node2vec: Scalable Feature Learning for Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; pp. 855–864. [Google Scholar]
- Wu, J.; Yuan, Q.; Lin, D.; You, W.; Chen, W.; Chen, C.; Zheng, Z. Who Are the Phishers? Phishing Scam Detection on Ethereum via Network Embedding. IEEE Trans. Syst. Man Cybern Syst. 2022, 52, 1156–1166. [Google Scholar] [CrossRef]
- Lin, D.; Wu, J.; Yuan, Q.; Zheng, Z. T-Edge: Temporal Weighted Multidigraph Embedding for Ethereum Transaction Network Analysis. Front. Phys. 2020, 8, 204. [Google Scholar] [CrossRef]
- Lin, D.; Wu, J.; Yuan, Q.; Zheng, Z. Modeling and Understanding Ethereum Transaction Records via a Complex Network Approach. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 2737–2741. [Google Scholar] [CrossRef]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar]
- Abu-El-Haija, S.; Kapoor, A.; Perozzi, B.; Lee, J. N-Gcn: Multi-Scale Graph Convolution for Semi-Supervised Node Classification. In Proceedings of the Uncertainty in Artificial Intelligence, Virtual, 3–6 August 2020; pp. 841–851. [Google Scholar]
- Duan, X.; Yan, B.; Dong, A.; Zhang, L.; Yu, J. Phishing Frauds Detection Based on Graph Neural Network on Ethereum. In Wireless Algorithms, Systems, and Applications; Lecture Notes in Computer Science; Wang, L., Segal, M., Chen, J., Qiu, T., Eds.; Springer Nature: Cham, Switzerland, 2022; Volume 13471, pp. 351–363. ISBN 978-3-031-19207-4. [Google Scholar]
- Zhou, X.; Yang, W.; Tian, X. Detecting Phishing Accounts on Ethereum Based on Transaction Records and EGAT. Electronics 2023, 12, 993. [Google Scholar] [CrossRef]
- Kumar, P.; Gupta, G.P.; Tripathi, R. TP2SF: A Trustworthy Privacy-Preserving Secured Framework for Sustainable Smart Cities by Leveraging Blockchain and Machine Learning. J. Syst. Archit. 2021, 115, 101954. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A Highly Efficient Gradient Boosting Decision Tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3149–3157. [Google Scholar]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. DeepWalk: Online Learning of Social Representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24 August 2014; pp. 701–710. [Google Scholar]
- He, J.; Qi, J.; Ramamohanarao, K. Timesan: A Time-Modulated Self-Attentive Network for next Point-of-Interest Recommendation. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–8. [Google Scholar]
- Li, S.; Wang, R.; Wu, H.; Zhong, S.; Xu, F. SIEGE: Self-Supervised Incremental Deep Graph Learning for Ethereum Phishing Scam Detection. In Proceedings of the 31st ACM International Conference on Multimedia, Ottawa, ON, Canada, 26 October 2023; pp. 8881–8890. [Google Scholar]
- Sukparungsee, S.; Areepong, Y.; Taboran, R. Exponentially Weighted Moving Average—Moving Average Charts for Monitoring the Process Mean. PLoS ONE 2020, 15, e0228208. [Google Scholar] [CrossRef] [PubMed]
Settings | Hyperparameters |
---|---|
Graph convolution layers | Layer 1: GraphConv (17, 128) |
Layer 2: ReLU () | |
Layer 3: GraphConv (128, 17) | |
FC layer | Layer 1: Linear (17, 2) |
Configuration | Epoch = 500; learning rate = 0.001; batch size = 256; optimizer = ‘Adam’; loss = ‘Cross Entropy Loss’ |
Method | Models | Accuracy | Precision | F1-Score | Recall | AUC-ROC | AUC-PR |
---|---|---|---|---|---|---|---|
Graph convolution | SAGEConv | 0.955 | 0.972 | 0.958 | 0.945 | 0.956 | 0.949 |
GCNConv | 0.936 | 0.951 | 0.941 | 0.932 | 0.937 | 0.923 | |
GATConv | 0.925 | 0.957 | 0.930 | 0.904 | 0.927 | 0.917 | |
Deep learning | CNN | 0.914 | 0.956 | 0.918 | 0.884 | 0.917 | 0.908 |
LSTM | 0.906 | 0.942 | 0.912 | 0.884 | 0.909 | 0.896 | |
Attention-CNN | 0.925 | 0.938 | 0.931 | 0.925 | 0.925 | 0.908 | |
Random walk | Node2Vec | 0.764 | 0.784 | 0.757 | 0.731 | 0.878 | 0.861 |
Deep Walk | 0.730 | 0.750 | 0.721 | 0.694 | 0.798 | 0.790 | |
Machine learning | LightGBM | 0.873 | 0.878 | 0.884 | 0.890 | 0.871 | 0.842 |
RF | 0.854 | 0.869 | 0.866 | 0.863 | 0.853 | 0.825 | |
SVM | 0.622 | 0.593 | 0.720 | 0.959 | 0.554 | 0.575 | |
GNB | 0.588 | 0.567 | 0.740 | 0.986 | 0.584 | 0.592 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Huang, J.; Liu, S.; Long, H. Multiscale Feature Fusion and Graph Convolutional Network for Detecting Ethereum Phishing Scams. Electronics 2024, 13, 1012. https://doi.org/10.3390/electronics13061012
Chen Z, Huang J, Liu S, Long H. Multiscale Feature Fusion and Graph Convolutional Network for Detecting Ethereum Phishing Scams. Electronics. 2024; 13(6):1012. https://doi.org/10.3390/electronics13061012
Chicago/Turabian StyleChen, Zhen, Jia Huang, Shengzheng Liu, and Haixia Long. 2024. "Multiscale Feature Fusion and Graph Convolutional Network for Detecting Ethereum Phishing Scams" Electronics 13, no. 6: 1012. https://doi.org/10.3390/electronics13061012
APA StyleChen, Z., Huang, J., Liu, S., & Long, H. (2024). Multiscale Feature Fusion and Graph Convolutional Network for Detecting Ethereum Phishing Scams. Electronics, 13(6), 1012. https://doi.org/10.3390/electronics13061012