Radiation Effects of Advanced Electronic Devices and Circuits
1. Introduction
2. Highlighting Key Contributions
3. The Future
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Zhao, P.; Li, B.; Liu, H.; Yang, J.; Jiao, Y.; Chen, Q.; Sun, Y.; Liu, J. The Effects of Total Ionizing Dose on the SEU Cross-Section of SOI SRAMs. Electronics 2022, 11, 3188.
- Xin, J.; Zhu, X.; Ma, Y.; Han, J. Study of Single Event Latch-Up Hardness for CMOS Devices with a Resistor in Front of DC-DC Converter. Electronics 2023, 12, 550.
- Pan, X.; Guo, H.; Lu, C.; Zhang, H.; Liu, Y. The Inflection Point of Single Event Transient in SiGe HBT at a Cryogenic Temperature. Electronics 2023, 12, 648.
- Ding, H.; Cui, J.; Zheng, Q.; Xu, H.; Gao, N.; Xun, M.; Yu, G.; He, C.; Li, Y.; Guo, Q. Effect of Trapped Charge Induced by Total Ionizing Dose Radiation on the Top-Gate Carbon Nanotube Field Effect Transistors. Electronics 2023, 12, 1000.
- Zhang, Z.; Guo, G.; Li, F.; Sun, H.; Chen, Q.; Zhao, S.; Liu, J.; Ouyang, X. Effects of Different Factors on Single Event Effects Introduced by Heavy Ions in SiGe Heterojunction Bipolar Transistor: A TCAD Simulation. Electronics 2023, 12, 1008.
- Li, X.; Cui, J.; Zheng, Q.; Li, P.; Cui, X.; Li, Y.; Guo, Q. Study of the Within-Batch TID Response Variability on Silicon-Based VDMOS Devices. Electronics 2023, 12, 1403.
- Cui, Y.; Feng, J.; Li, Y.; Wen, L.; Guo, Q. Proton Radiation Effects of CMOS Image Sensors on Different Star Map Recognition Algorithms for Star Sensors. Electronics 2023, 12, 1629.
- Yang, W.; Li, Y.; Li, Y.; Hu, Z.; Cai, J.; He, C.; Wang, B.; Wu, L. Neutron Irradiation Testing and Monte Carlo Simulation of a Xilinx Zynq-7000 System on Chip. Electronics 2023, 12, 2057.
- Feng, H.; Liang, X.; Pu, X.; Xiang, Y.; Zhang, T.; Wei, Y.; Feng, J.; Sun, J.; Zhang, D.; Li, Y.; et al. Total Ionizing Dose Effects of 60Co -Ray Radiation on Split-Gate SiC MOSFETs. Electronics 2023, 12, 2398.
- Feng, J.; Wang, H.; Li, Y.; Wen, L.; Guo, Q. Mechanism of Total Ionizing Dose Effects of CMOS Image Sensors on Camera Resolution. Electronics 2023, 12, 2667.
- Yang, Z.; Wen, L.; Li, Y.; Feng, J.; Zhou, D.; Liu, B.; Zhao, Z.; Guo, Q. Heavy Ion Single Event Effects in CMOS Image Sensors: SET and SEU. Electronics 2023, 12, 2833.
- Liang, X.; Feng, H.; Xiang, Y.; Sun, J.; Wei, Y.; Zhang, D.; Li, Y.; Feng, J.; Yu, X.; Guo, Q. Oxide Electric Field-Induced Degradation of SiC MOSFET for Heavy-Ion Irradiation. Electronics 2023, 12, 2886.
- Li, T.; Yuan, J.; Bai, Y.; Yu, C.; Gou, C.; Shu, L.; Wang, L.; Zhao, Y. Research on High-Dose-Rate Transient Ionizing Radiation Effect in Nano-Scale FDSOI Flip-Flops. Electronics 2023, 12, 3149.
- Liu, M.; He, C.; Feng, J.; Xun, M.; Sun, J.; Li, Y.; Guo, Q. Analysis of Difference in Areal Density Aluminum Equivalent Method in Ionizing Total Dose Shielding Analysis of Semiconductor Devices. Electronics 2023, 12, 4181.
- Lin, L.; Cong, Z.; Jia, C. Recovery Effect of Hot-Carrier Stress on -ray-Irradiated 0.13 um Partially Depleted SOI n-MOSFETs. Electronics 2023, 12, 4233.
- Xiang, Y.; Liang, X.; Feng, J.; Feng, H.; Zhang, D.; Wei, Y.; Yu, X.; Guo, Q. Refined Analysis of Leakage Current in SiC Power Metal Oxide Semiconductor Field Effect Transistors after Heavy Ion Irradiation. Electronics 2023, 12, 4349.
- Song, R.; Shao, J.; Chi, Y.; Liang, B.; Chen, J.; Wu, Z. Machine Learning-Based Soft-Error-Rate Evaluation for Large-Scale Integrated Circuits. Electronics 2023, 12, 4978.
- Zhou, H.; Yu, H.; Zou, Z.; Su, Z.; Zhao, Q.; Yang, W.; He, C. Evaluation of Single Event Upset on a Relay Protection Device. Electronics 2024, 13, 64.
- Xun, M.; Li, Y.; Feng, J.; He, C.; Liu, M.; Guo, Q. Effect of Proton Irradiation on Complementary Metal Oxide Semiconductor (CMOS) Single-Photon Avalanche Diodes. Electronics 2024, 13, 224.
References
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.A.A.H.; Dubois, P.A.; Asai, M.A.A.M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef]
- Weller, R.A.; Mendenhall, M.H.; Reed, R.A.; Schrimpf, R.D.; Warren, K.M.; Sierawski, B.D.; Massengill, L.W. Monte Carlo simulation of single event effects. IEEE Trans. Nucl. Sci. 2010, 57, 1726–1746. [Google Scholar] [CrossRef]
- Reed, R.A.; Weller, R.A.; Mendenhall, M.H.; Fleetwood, D.M.; Warren, K.M.; Sierawski, B.D.; King, M.P.; Schrimpf, R.D.; Auden, E.C. Physical processes and applications of the Monte Carlo radiative energy deposition (MRED) code. IEEE Trans. Nucl. Sci. 2015, 62, 1441–1461. [Google Scholar] [CrossRef]
- Munteanu, D.; Autran, J.L. Modeling and simulation of singleevent effects in digital devices and ICs. IEEE Trans. Nucl. Sci. 2008, 55, 1854–1878. [Google Scholar] [CrossRef]
- Artola, L.; Gaillardin, M.; Hubert, G.; Raine, M.; Paillet, P. Modeling single event transients in advanced devices and ICs. IEEE Trans. Nucl. Sci. 2015, 62, 1528–1539. [Google Scholar] [CrossRef]
- Hughes, H.L.; Benedetto, J.M. Radiation effects and hardening of MOS technology: Devices and circuits. IEEE Trans. Nucl. Sci. 2003, 50, 500–521. [Google Scholar] [CrossRef]
- Lacoe, R.C. Improving integrated circuit performance through the application of hardness-by-design methodology. IEEE Trans. Nucl. Sci. 2008, 55, 1903–1925. [Google Scholar] [CrossRef]
- Lacoe, R.C.; Osborn, J.V.; Koga, R.; Brown, S.; Mayer, D. Application of hardness-by-design methodology to radiation-tolerant ASIC technologies. IEEE Trans. Nucl. Sci. 2000, 47, 2334–2341. [Google Scholar] [CrossRef]
- Leray, J.L.; Dupont-Nivet, E.; Pere, J.F.; Coïc, Y.M.; Raffaelli, M.; Auberton-Hervé, A.J.; Bruel, M.; Giffard, B.; Margail, J. CMOS/SOI hardening at 100 Mrad(SiO2). IEEE Trans. Nucl. Sci. 1990, 37, 2013–2019. [Google Scholar] [CrossRef]
- Wang, H.; Dai, X.; Ibrahim, Y.M.Y.; Sun, H.; Nofal, I.; Cai, L.; Guo, G.; Shen, Z.; Chen, L. A Layout-Based Rad-Hard DICE Flip-Flop Design. J. Electron. Test. 2019, 35, 111–117. [Google Scholar] [CrossRef]
- Fleetwood, D.M. Radiation effects in a post-Moore world. IEEE Trans. Nucl. Sci. 2021, 68, 509–545. [Google Scholar] [CrossRef]
- Gaspard, N.J.; Jagannathan, S.; Diggins, Z.J.; King, M.P.; Wen, S.-J.; Wong, R.; Loveless, T.D.; Lilja, K.; Bounasser, M.; Reece, T.; et al. Technology Scaling Comparison of Flip-Flop Heavy-Ion Single-Event Upset Cross Sections. IEEE Trans. Nucl. Sci. 2013, 60, 4368–4373. [Google Scholar] [CrossRef]
- Fleetwood, Z.E.; Lourenco, N.E.; Ildefonso, A.; Warner, J.H.; Wachter, M.T.; Hales, J.M.; Tzintzarov, G.N.; Roche, N.J.-H.; Khachatrian, A.; Buchner, S.P.; et al. Using TCAD modeling to compare heavy-ion and laser induced single event transients in SiGe HBTs. IEEE Trans. Nucl. Sci. 2017, 64, 398–405. [Google Scholar] [CrossRef]
- Chatterjee, I.; Narasimham, B.; Mahatme, N.N.; Bhuva, B.L.; Reed, R.A.; Schrimpf, R.D.; Wang, J.K.; Vedula, N.; Bartz, B.; Monzel, C. Impact of technology scaling on SRAM soft error rates. IEEE Trans. Nucl. Sci. 2014, 61, 3512–3518. [Google Scholar] [CrossRef]
- Sheshadri, V.B.; Bhuva, B.L.; Reed, R.A.; Weller, R.A.; Mendenhall, M.H.; Schrimpf, R.D.; Warren, K.M.; Sierawski, B.D.; Wen, S.-J.; Wong, R. Effects of multi-node charge collection in flip-flop designs at advanced technology nodes. In Proceedings of the 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; pp. 1026–1030. [Google Scholar]
- Vogl, T.; Sripathy, K.; Sharma, A.; Reddy, P.; Sullivan, J.; Machacek, J.R.; Zhang, L.; Karouta, F.; Buchler, B.C.; Doherty, M.W.; et al. Radiation tolerance of two-dimensional material-based devices for space applications. Nature 2019, 10, 1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Kalita, H.; Krishnaprasad, A.; Dev, D.; O’Hara, A.; Jiang, R.; Zhang, E.; Fleetwood, D.M.; Schrimpf, R.D.; Pantelides, S.T.; et al. Total-ionizing-dose response of MoS2 transistors with ZrO2 and h-BN gate dielectrics. IEEE Trans. Nucl. Sci. 2019, 66, 1584–1591. [Google Scholar] [CrossRef]
- Gao, S.; Li, X.; Zhao, S.; He, Z.; Ye, B.; Cai, L.; Sun, Y.; Xiao, G.; Cai, C.; Liu, J. Heavy Ion Induced MCUs in 28 nm SRAM-based FPGAs: Upset Proportions, Classifications, and Pattern Shapes. Nucl. Sci. Tech. 2022, 33, 10. [Google Scholar] [CrossRef]
- Chi, Y.; Huang, P.; Sun, Q.; Liang, B.; Zhao, Z. Characterization of Single-Event Upsets Induced by High-LET Heavy Ions in 16-nm Bulk FinFET SRAMs. IEEE Trans. Nucl. Sci. 2022, 69, 1176–1181. [Google Scholar]
- Chi, Y.; Wu, Z.; Huang, P.; Sun, Q.; Liang, B.; Zhao, Z. Characterization of single-event transients induced by high LET heavy ions in 16 nm bulk FinFET inverter chains. Microelectron. Reliab. 2022, 130, 114490. [Google Scholar] [CrossRef]
- Dodds, N.A.; Martinez, M.J.; Dodd, P.E.; Shaneyfelt, M.R.; Sexton, F.W.; Black, J.D.; Lee, D.S.; Swanson, S.E.; Bhuva, B.L.; Warren, K.M.; et al. The contribution of low-energy protons to the total on-orbit SEU rate. IEEE Trans. Nucl. Sci. 2015, 62, 2440–2451. [Google Scholar] [CrossRef]
- Sierawski, B.D.; Mendenhall, M.H.; Reed, R.A.; Clemens, M.A.; Weller, R.A.; Schrimpf, R.D.; Blackmore, E.W.; Trinczek, M.; Hitti, B.; Pellish, J.A.; et al. Muon-induced single event upsets in deep-submicron technology. IEEE Trans. Nucl. Sci. 2010, 57, 3273–3278. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, Y.; Cai, C.; Cai, L. Radiation Effects of Advanced Electronic Devices and Circuits. Electronics 2024, 13, 1073. https://doi.org/10.3390/electronics13061073
Chi Y, Cai C, Cai L. Radiation Effects of Advanced Electronic Devices and Circuits. Electronics. 2024; 13(6):1073. https://doi.org/10.3390/electronics13061073
Chicago/Turabian StyleChi, Yaqing, Chang Cai, and Li Cai. 2024. "Radiation Effects of Advanced Electronic Devices and Circuits" Electronics 13, no. 6: 1073. https://doi.org/10.3390/electronics13061073
APA StyleChi, Y., Cai, C., & Cai, L. (2024). Radiation Effects of Advanced Electronic Devices and Circuits. Electronics, 13(6), 1073. https://doi.org/10.3390/electronics13061073