A High-Efficiency, Ultrawide-Dynamic-Range Radio Frequency Energy Harvester Using Adaptive Reconfigurable Technique
Abstract
:1. Introduction
2. Proposed RF Energy Harvester Architecture
2.1. System Design
2.2. Single-Stage Rectifier Structure
2.3. Adaptive Controller
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Z.; Chang, C.-Y.; Shen, R.; Wu, S.-J.; Hou, D. Smart Bracelet Based on the Internet of Things. In Proceedings of the 2023 International Conference on Consumer Electronics—Taiwan (ICCE-Taiwan), Taiwan, China, 9–11 July 2023; pp. 65–66. [Google Scholar]
- Vishwakarma, S.K.; Upadhyaya, P.; Kumari, B.; Mishra, A.K. Smart Energy Efficient Home Automation System Using IoT. In Proceedings of the 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), Ghaziabad, India, 18–19 April 2019; pp. 1–4. [Google Scholar]
- Kumar, J.; Ramesh, P.R. Low Cost Energy Efficient Smart Security System with Information Stamping for IoT Networks. In Proceedings of the 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU), Bhimtal, India, 23–24 February 2018; pp. 1–5. [Google Scholar]
- Gupta, A.K.; Johari, R. IOT Based Electrical Device Surveillance and Control System. In Proceedings of the 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), New York, NY, USA, 18–19 April 2019; pp. 1–5. [Google Scholar]
- Marshal, R.; Gobinath, K.; Rao, V.V. Proactive Measures to Mitigate Cyber Security Challenges in IoT Based Smart Healthcare Networks. In Proceedings of the 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, Canada, 21–24 April 2021; pp. 1–4. [Google Scholar]
- Aledhari, M.; Razzak, R.; Qolomany, B.; Al-Fuqaha, A.; Saeed, F. Biomedical IoT: Enabling Technologies, Architectural Elements, Challenges, and Future Directions. IEEE Access 2022, 10, 31306–31339. [Google Scholar] [CrossRef]
- Lian, Q.; Han, P.; Mei, N. A Review of Converter Circuits for Ambient Micro Energy Harvesting. Micromachines 2022, 13, 2222. [Google Scholar] [CrossRef] [PubMed]
- Xiao-qing, T.; Shuai, Z.; Yang, Y.; Shu-ling, Z.; Xiao-chuan, W. Micro-Scale RF Energy Harvesting and Power Management for Passive IoT Devices. In Proceedings of the 2019 IEEE 2nd International Conference on Renewable Energy and Power Engineering (REPE), Toronto, ON, Canada, 2–4 November 2019; pp. 54–58. [Google Scholar]
- Kumawat, Y.; Shukla, S.; Verma, D.; Rathore, P.S. Wireless Energy Harvesting and Transfer: A Comprehensive Review of Recent Developments. In Proceedings of the 2023 IEEE Renewable Energy and Sustainable E-Mobility Conference (RESEM), Bhopal, India, 17–18 May 2023; pp. 1–4. [Google Scholar]
- Wang, C.-H.; Huang, K.-H.; Wu, C.-Y. Ambient Energy Harvesting Chips for IoT End Devices: Review. In Proceedings of the 2021 9th International Japan-Africa Conference on Electronics, Communications, and Computations (JAC-ECC), Alexandria, Egypt, 13–14 December 2021; pp. 221–224. [Google Scholar]
- Bathre, M.; Das, P.K. Hybrid Energy Harvesting for Maximizing Lifespan and Sustainability of Wireless Sensor Networks: A Comprehensive Review & Proposed Systems. In Proceedings of the 2020 International Conference on Computational Intelligence for Smart Power System and Sustainable Energy (CISPSSE), Keonjhar, India, 29–31 July 2020; pp. 1–6. [Google Scholar]
- Han, P.; Zhang, Z.; Xia, Y.; Mei, N. A 920-MHz Dual-Mode Receiver with Energy Harvesting for UHF RFID Tag and IoT. Electronics 2020, 9, 1042. [Google Scholar] [CrossRef]
- Han, P.; Mei, N.; Zhang, Z. A UHF Semi-Passive RFID System with Photovoltaic/Thermoelectric Energy Harvesting for Wireless Sensor Networks. In Proceedings of the 2019 IEEE 13th International Conference on ASIC (ASICON), Chongqing, China, 29 October–1 November 2019; pp. 1–4. [Google Scholar]
- Han, P.; Zhang, Z.; Mei, N. Low-Power Passive/Active UHF RFID Tag Transceiver with Frequency Locked On-Chip Oscillator. J. Circuits Syst. Comput. 2020, 29, 2050234. [Google Scholar] [CrossRef]
- Takatou, K.; Shinomiya, N. IoT-Based Real-Time Monitoring System for Fall Detection of the Elderly with Passive RFID Sensor Tags. In Proceedings of the 2020 35th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Nagoya, Japan, 3–6 July 2020; pp. 193–196. [Google Scholar]
- Lee, Y.C.; Ramiah, H.; Choo, A.; Churchill, K.K.P.; Lai, N.S.; Lim, C.C.; Chen, Y.; Mak, P.-I.; Martins, R.P. High-Performance Multiband Ambient RF Energy Harvesting Front-End System for Sustainable IoT Applications—A Review. IEEE Access 2023, 11, 11143–11164. [Google Scholar] [CrossRef]
- Chun, A.C.C.; Ramiah, H.; Mekhilef, S. Wide Power Dynamic Range CMOS RF-DC Rectifier for RF Energy Harvesting System: A Review. IEEE Access 2022, 10, 23948–23963. [Google Scholar] [CrossRef]
- Kotani, K.; Sasaki, A.; Ito, T. High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs. IEEE J. Solid-State Circuits 2009, 44, 3011–3018. [Google Scholar] [CrossRef]
- Hameed, Z.; Moez, K. A 3.2 V −15 dBm Adaptive Threshold-Voltage Compensated RF Energy Harvester in 130 Nm CMOS. IEEE Trans. Circuits Syst. Regul. Pap. 2015, 62, 948–956. [Google Scholar] [CrossRef]
- Ouda, M.H.; Khalil, W.; Salama, K.N. Self-Biased Differential Rectifier with Enhanced Dynamic Range for Wireless Powering. IEEE Trans. Circuits Syst. II Express Briefs 2017, 64, 515–519. [Google Scholar] [CrossRef]
- Choo, A.; Ramiah, H.; Churchill, K.K.P.; Chen, Y.; Mekhilef, S.; Mak, P.-I.; Martins, R.P. A Reconfigurable CMOS Rectifier with 14-dB Power Dynamic Range Achieving >36-dB/Mm2 FoM for RF-Based Hybrid Energy Harvesting. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2022, 30, 1533–1537. [Google Scholar] [CrossRef]
- Choo, A.; Ramiah, H.; Churchill, K.K.P.; Chen, Y.; Mekhilef, S.; Mak, P.-I.; Martins, R.P. A High-Performance Dual-Topology CMOS Rectifier with 19.5-dB Power Dynamic Range for RF-Based Hybrid Energy Harvesting. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2023, 31, 1253–1257. [Google Scholar] [CrossRef]
- Choo, A.; Lee, Y.C.; Ramiah, H.; Chen, Y.; Mak, P.-I.; Martins, R.P. A High-PCE Range-Extension CMOS Rectifier Employing Advanced Topology Amalgamation Technique for Ambient RF Energy Harvesting. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 3747–3751. [Google Scholar] [CrossRef]
- Khan, D.; Oh, S.J.; Shehzad, K.; Basim, M.; Verma, D.; Pu, Y.G.; Lee, M.; Hwang, K.C.; Yang, Y.; Lee, K.-Y. An Efficient Reconfigurable RF-DC Converter with Wide Input Power Range for RF Energy Harvesting. IEEE Access 2020, 8, 79310–79318. [Google Scholar] [CrossRef]
- Almansouri, A.S.; Ouda, M.H.; Salama, K.N. A CMOS RF-to-DC Power Converter with 86% Efficiency and −19.2-dBm Sensitivity. IEEE Trans. Microw. Theory Tech. 2018, 66, 2409–2415. [Google Scholar] [CrossRef]
- Noghabaei, S.M.; Radin, R.L.; Savaria, Y.; Sawan, M. A High-Sensitivity Wide Input-Power-Range Ultra-Low-Power RF Energy Harvester for IoT Applications. IEEE Trans. Circuits Syst. Regul. Pap. 2022, 69, 440–451. [Google Scholar] [CrossRef]
- Moghaddam, A.K.; Chuah, J.H.; Ramiah, H.; Ahmadian, J.; Mak, P.-I.; Martins, R.P. A 73.9%-Efficiency CMOS Rectifier Using a Lower DC Feeding (LDCF) Self-Body-Biasing Technique for Far-Field RF Energy-Harvesting Systems. IEEE Trans. Circuits Syst. Regul. Pap. 2017, 64, 992–1002. [Google Scholar] [CrossRef]
- Al-Absi, M.A.; Alkhalifa, I.M.; Mohammed, A.A.; Al-Khulaifi, A.A. A CMOS Rectifier Employing Body Biasing Scheme for RF Energy Harvesting. IEEE Access 2021, 9, 105606–105611. [Google Scholar] [CrossRef]
- Li, Y.; Li, Q.; Liu, X.; Wang, X.; Liu, Y. A High Efficiency CMOS RF Rectifier for RF Energy Harvesting with Dynamic Self-Body-Biasing Technique. IEICE Electron. Express 2019, 16, 20190462. [Google Scholar] [CrossRef]
- Filanovsky, I.M.; Baltes, H. CMOS Schmitt Trigger Design. IEEE Trans. Circuits Syst. Fundam. Theory Appl. 1994, 41, 46–49. [Google Scholar] [CrossRef]
- Chang, R.C.-H.; Chen, W.-C.; Liu, L.; Cheng, S.-H. An AC–DC Rectifier with Active and Non-Overlapping Control for Piezoelectric Vibration Energy Harvesting. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 969–973. [Google Scholar] [CrossRef]
- Mahnashi, Y.; Al-Khulaifi, A.; Al-Absi, M. A New Wide Power Dynamic Range CMOS RF-to-DC Converter Using Body-Control Scheme. Arab. J. Sci. Eng. 2023, 48, 15553–15560. [Google Scholar] [CrossRef]
- Mahsafar, A.; Yavari, M. A Wide Dynamic Range CMOS Differential Rectifier for Radio Frequency Energy Harvesting Systems. Circuits Syst. Signal Process. 2024. [Google Scholar] [CrossRef]
CMOS Technology | Frequency | Topology | No. of Stages | Output Load | Vaux | Peak PCE | DR (≥50%) | |
---|---|---|---|---|---|---|---|---|
This Work ** | 180 nm | 900 M | Self-Biasing, Double Sided, Reconfigurable | 1–2 | 100 kΩ | No | 64%@−19 dBm 69%@−11 dBm | (−23~>−6) >17 |
MTT’18 [25] * | 180 nm | 900 M | Self-Biasing, Double Sided | 1 | 100 kΩ | No | 66%@−18.5 dBm | (−22.6~−15) 7.6 |
VLSI’22 [21] * | 130 nm | 900 M | Dickson, Reconfigurable | 6–12 | 100 kΩ | Yes | 34.93%@−10 dBm | -- |
TCAS-I’22 [26] * | 130 nm | 915 M | Cross-Coupled Voltage Compensation | 10 | 450 kΩ | No | 42.4%@−16 dBm | -- |
VLSI’23 [22] | 130 nm | 900 M | Cross-Coupled Dual Topology | 3 | 100 kΩ | Yes | 78.4%@−16 dBm * 88%@−16.5 dBm ** | (−19~−13.3) 5.7 * (−19.5~−7.3) 12.2 ** |
TCAS-II’23 [23] * | 65 nm | 900 M | Cross-Coupled Advanced Topology Amalgamation | 3 | 100 kΩ | No | 79.77%@−17.5 dBm | (−22~−11.7) 10.3 |
AICSP’23 [32] ** | 180 nm | 920 M | Body Control | 1–3 | 100 kΩ | No | 71.2%@−15.6 dBm | (−18~−12) 6 |
AICSP’24 [33] ** | 180 nm | 900 M | Diode-Feedback and Feed-Forward Rectifier | 1 | 100 kΩ | No | 76.13%@−19 dBm | (−24~−14) 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, Q.; Mei, N. A High-Efficiency, Ultrawide-Dynamic-Range Radio Frequency Energy Harvester Using Adaptive Reconfigurable Technique. Electronics 2024, 13, 1193. https://doi.org/10.3390/electronics13071193
Lian Q, Mei N. A High-Efficiency, Ultrawide-Dynamic-Range Radio Frequency Energy Harvester Using Adaptive Reconfigurable Technique. Electronics. 2024; 13(7):1193. https://doi.org/10.3390/electronics13071193
Chicago/Turabian StyleLian, Qian, and Niansong Mei. 2024. "A High-Efficiency, Ultrawide-Dynamic-Range Radio Frequency Energy Harvester Using Adaptive Reconfigurable Technique" Electronics 13, no. 7: 1193. https://doi.org/10.3390/electronics13071193
APA StyleLian, Q., & Mei, N. (2024). A High-Efficiency, Ultrawide-Dynamic-Range Radio Frequency Energy Harvester Using Adaptive Reconfigurable Technique. Electronics, 13(7), 1193. https://doi.org/10.3390/electronics13071193