Highly Reliable Short-Circuit Protection Circuits for Gallium Nitride High-Electron-Mobility Transistors
Abstract
:1. Introduction
2. Short Circuit Detection Method Based on DC Bus Voltage Drop
2.1. Instantaneous Voltage Drop Due to Short Circuit
2.2. Instantaneous Voltage Drop Due to Normal Switching
3. Proposed Short-Circuit Protection Circuit
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lidow, A.; Strydom, J. Gallium Nitride (GaN) Technology Overview; White Paper; Efficient Power Conversion Corporation (EPC-co): El Segundo, CA, USA, 2012. [Google Scholar]
- Li, H.; Li, X.; Wang, X.; Wang, J.; Alsmadi, Y.; Liu, L.; Bala, S. E-mode GaN HEMT short circuit robustness and degradation. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 1995–2002. [Google Scholar] [CrossRef]
- Huang, X.; Lee, D.Y.; Bondarenko, V.; Baker, A.; Sheridan, D.C.; Huang, A.Q.; Baliga, B.J. Experimental study of 650V AlGaN/GaN HEMT short-circuit safe operating area (SCSOA). In Proceedings of the IEEE International Symposium on Power Semiconductor Devices & IC’s (ISPSD), Waikoloa, HI, USA, 15–19 June 2014; pp. 273–276. [Google Scholar]
- Badawi, N.; Awwad, A.E.; Dieckerhoff, S. Robustness in short-circuit mode: Benchmarking of 600V GaN HEMTs with power Si and SiC MOSFETs. In Proceedings of the IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–7. [Google Scholar]
- Fernández, M.; Perpiñà, X.; Roig, J.; Vellvehi, M.; Bauwens, F.; Jordà, X.; Tack, M. P-GaN HEMTs Drain and Gate Current Analysis Under Short-Circuit. IEEE Trans. Electron Device Lett. 2017, 38, 505–508. [Google Scholar] [CrossRef]
- Kim, C.-M.; Kim, J.-S.; Kim, N.-J. Study on GaN FET Short Circuit Characteristics and Development of Effective Short Circuit Protection Method. In Proceedings of the 2022 25th International Conference on Electrical Machines and Systems (ICEMS), Chiang Mai, Thailand, 29 November–2 December 2022; pp. 1–5. [Google Scholar]
- Awwad, A.E.; Dieckerhoff, S. Short-circuit evaluation and overcurrent protection for SiC power MOSFETs. In Proceedings of the 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), Geneva, Switzerland, 8–10 September 2015; pp. 1–9. [Google Scholar]
- Zhang, W.; Wang, F.; Zhang, Z.; Holzinger, B. Fast Wide-bandgap Device Overcurrent Protection with Direct Current Measurement. In Proceedings of the 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019–ECCE Asia), Busan, Republic of Korea, 27–30 May 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Xue, J.; Xin, Z.; Wang, H.; Loh, P.C.; Blaabjerg, F. An improved di/dt-RCD detection for short-circuit protection of SiC MOSFET. IEEE Trans. Power Electron. 2021, 36, 12–17. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, X.; Xue, Y.; Tolbert, L.M.; Wang, F.; Blalock, B.J. Design and performance evaluation of overcurrent protection schemes for Silicon Carbide (SiC) power MOSFETs. IEEE Trans. Ind. Electron. 2014, 61, 5570–5581. [Google Scholar] [CrossRef]
- Sun, K.; Wang, J.; Burgos, R.; Boroyevich, D. Design, Analysis, and Discussion of Short Circuit and Overload Gate-Driver Dual-Protection Scheme for 1.2-kV, 400-A SiC MOSFET Modules. IEEE Trans. Power Electron. 2020, 35, 3054–3068. [Google Scholar] [CrossRef]
- Stecca, M.; Tiftikidis, P.; Soeiro, T.B.; Bauer, P. Gate Driver Design for 1.2 kV SiC Module with PCB Integrated Rogowski Coil Protection Circuit. In Proceedings of the 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 10–14 October 2021; pp. 5723–5728. [Google Scholar] [CrossRef]
- Rafiq, A.; Pramanick, S. Ultrafast Protection of Discrete SiC MOSFETs With PCB Coil-Based Current Sensors. IEEE Trans. Power Electron. 2023, 38, 1860–1870. [Google Scholar] [CrossRef]
- Alemdar, O.S.; Karakaya, F.; Keysan, O. PCB Layout Based Short-Circuit Protection Scheme for GaN HEMTs. In Proceedings of the 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 29 September–3 October 2019; pp. 2212–2218. [Google Scholar] [CrossRef]
- Karakaya, F.; Alemdar, O.S.; Keysan, O. Layout-Based Ultrafast Short-Circuit Protection Technique for Parallel-Connected GaN HEMTs. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 9, 6385–6395. [Google Scholar] [CrossRef]
- Jiang, W.L.; Murray, S.K.; Zaman, M.S.; De Vleeschouwer, H.; Moens, P.; Roig, J.; Trescases, O. An Integrated GaN Overcurrent Protection Circuit for Power HEMTs Using SenseHEMT. IEEE Trans. Power Electron. 2022, 37, 9314–9324. [Google Scholar] [CrossRef]
- Sadik, D.-P.; Colmenares, J.; Tolstoy, G.; Peftitsis, D.; Bakowski, M.; Rabkowski, J.; Nee, H.-P. Short-Circuit Protection Circuits for Silicon-Carbide Power Transistors. IEEE Trans. Ind. Electron. 2016, 63, 1995–2004. [Google Scholar] [CrossRef]
- Hou, R.; Lu, J.; Chen, D. An Ultrafast Discrete Short-Circuit Protection Circuit for GaN HEMTs. In Proceedings of the 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 23–27 September 2018; pp. 1920–1925. [Google Scholar] [CrossRef]
- Acuna, J.; Walter, J.; Kallfass, I.; Gan, G.N. Very fast short circuit protection for gallium-nitride power transistors based on printed circuit board integrated current sensor. In Proceedings of the 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), Riga, Latvia, 17–21 September 2018; pp. 1–10. Available online: https://ieeexplore.ieee.org/document/8515547 (accessed on 13 January 2024).
- Jones, E.A.; Williford, P.; Wang, F. A fast overcurrent protection scheme for GaN GITs. In Proceedings of the 2017 IEEE 5th Workshop on Wide-Bandgap Power Devices and Applications, Albuquerque, NM, USA, 30 October–1 November 2017; pp. 277–284. [Google Scholar]
- Sun, K.; Wang, J.; Burgos, R.; Boroyevich, D.; Kang, Y.; Choi, E. Analysis and design of an overcurrent protection scheme based on parasitic inductance of SiC MOSFET power module. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 2806–2812. [Google Scholar]
- Li, H.; Lyu, X.; Wang, K.; Abdullah, Y.; Hu, B.; Yang, Z.; Wang, J.; Liu, L.; Bala, S. An Ultra-Fast Short Circuit Protection Solution for E-mode GaN HEMTs. In Proceedings of the 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), Xi’an, China, 17–19 May 2018; pp. 187–192. [Google Scholar] [CrossRef]
- Zhou, Y.; Bai, Z.; Gong, X. Study of a Fast Over-Current Protection Based on Bus Voltage Drop for Gallium Nitride Power Device. IOP Conf. Ser. Mater. Sci. Eng. 2020, 782, 022085. [Google Scholar] [CrossRef]
- Datasheet GS-065-011, GaN Systems. Available online: https://gansystems.com/gan-transistors/gs-065-011-1-l/ (accessed on 13 January 2024).
LStray1 | LStray2 | CFilter | CDC-Link | |
Value | 0.2 nH | 35 nH | 0.2 µF | 100 µF |
0.5 nH | 0.5 µF | |||
1 nH | 1 µF | |||
1.5 nH | 1.5 µF |
Parameter | CDC-Link | CFilter | LStray1 | LStray1 |
Value | 100 µF | 4 µF | 1.5 nH | 35 nH |
Parameter | VDC | LLoad | RG_ON | VOn/VOff |
Value | 400 V | 100 µH | 15 Ω | 6 V/−3 V |
Parameter | R1 | C1 | R2 | C2 |
Value | 10 Ω | 750 pF | 1 Ω | 5.1 nF |
Reference | Device | Protection Method | Component (Passive/Active) | Protection Time |
---|---|---|---|---|
[7] | SiC | Shunt Resistor | 4/3 | 150 ns |
[8] | GaN | Shunt Resistor | - | 60 ns |
[9] | SiC | Package Internal Inductance | 5/4 | 60 ns |
[10] | SiC | Package Internal Inductance | 6/7 | 100 ns |
[12] | SiC | Rogowski coil | 4/5 | 700 ns |
[13] | SiC | Rogowski coil | 8/5 | - |
[14] | GaN | Stray inductance | - | 250 ns |
[15] | GaN | Stray inductance | 3/5 | 250 ns |
[17] | GaN | Desaturation | 4/4 | 360 ns |
[18] | GaN | Desaturation | 8/5 | 125 ns |
[22] | GaN | DC bus voltage | 4/3 | 280 ns |
[23] | GaN | DC bus voltage | 8/5 | 370 ns |
Proposed | GaN | DC bus voltage | 5/2 | 257 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, C.-M.; Yoon, H.-S.; Kim, J.-S.; Kim, N.-J. Highly Reliable Short-Circuit Protection Circuits for Gallium Nitride High-Electron-Mobility Transistors. Electronics 2024, 13, 1203. https://doi.org/10.3390/electronics13071203
Kim C-M, Yoon H-S, Kim J-S, Kim N-J. Highly Reliable Short-Circuit Protection Circuits for Gallium Nitride High-Electron-Mobility Transistors. Electronics. 2024; 13(7):1203. https://doi.org/10.3390/electronics13071203
Chicago/Turabian StyleKim, Chul-Min, Hyun-Soo Yoon, Jong-Soo Kim, and Nam-Joon Kim. 2024. "Highly Reliable Short-Circuit Protection Circuits for Gallium Nitride High-Electron-Mobility Transistors" Electronics 13, no. 7: 1203. https://doi.org/10.3390/electronics13071203
APA StyleKim, C.-M., Yoon, H.-S., Kim, J.-S., & Kim, N.-J. (2024). Highly Reliable Short-Circuit Protection Circuits for Gallium Nitride High-Electron-Mobility Transistors. Electronics, 13(7), 1203. https://doi.org/10.3390/electronics13071203