Cooperative Caching and Resource Allocation in Integrated Satellite–Terrestrial Networks
Abstract
:1. Introduction
- A system model is studied by introducing a neighboring sub-network approach in integrated satellite–terrestrial networks, where the inter-satellite and satellite–terrestrial cooperative caching is considered.
- The problem is formulated under multiple physical constraints, the aim is to jointly minimize the deployment costs of storage resource usage and network bandwidth consumption.
- The CCRA algorithm is proposed based on a neighborhood search to find the feasible strategy in an acceptable running time. The performance is also evaluated by different experiments.
2. Related Work
2.1. Cooperative Caching in Terrestrial Networks
2.2. Cooperative Caching in Satellite Networks
2.3. Cooperative Caching in Satellite–Terrestrial Networks
3. System Model
3.1. Integrated Satellite–Terrestrial Network
3.2. Users and Contents
3.3. Cooperative Caching and Resource Allocation
4. Problem Formulation
4.1. Cooperative Caching and Resource Allocation Problem
4.1.1. Caching Model
4.1.2. Bandwidth Consumption Model
4.1.3. Communication Model
4.1.4. Problem Description
4.2. Problem Analysis
5. Proposed Algorithm
Algorithm 1 Proposed CCRA Algorithm. |
Input: Users U, sub-network hops ; |
Output: ; |
|
6. Performance Evaluation
6.1. Simulation Parameters
6.2. Performance Comparison for Three Different Scenarios
6.3. Performance Comparison with Three Different Algorithms
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Ma, X.; Zhou, A.; Wang, S. Cooperative Content Caching and Distribution for Satellite CDNs. In Proceedings of the 2023 IEEE 31st International Conference on Network Protocols (ICNP), Reykjavik, Iceland, 10–13 October 2023; pp. 1–6. [Google Scholar]
- Priscilla, C.V.; Charulatha, A.R. A Comparative Study on Caching Strategies in Content Centric Networking for Mobile Networks. In Proceedings of the 2019 11th International Conference on Advanced Computing (ICoAC), Chennai, India, 18–20 December 2019; pp. 122–128. [Google Scholar]
- 5G NTN Technology Helps to Build a Star-Ground Converged Network by Directly Connecting Terminal to Satellite. Available online: https://www.mobileworldlive.com/zte-updates-2019-20/5g-ntn-technology-helps-to-build-a-star-ground-converged-network-by-directly-connecting-terminal-to-satellite (accessed on 27 December 2023).
- Individuals Using the Internet. Available online: https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx (accessed on 27 December 2023).
- Deng, R.; Di, B.; Zhang, H.; Kuang, L.; Song, L. Ultra-Dense LEO Satellite Constellations: How Many LEO Satellites Do We Need? IEEE Trans. Wirel. Commun. 2021, 20, 4843–4857. [Google Scholar] [CrossRef]
- Zhai, H. Integration of 5G and Satellite Communication Systems. Space Electron. Tech. 2020, 17, 71–76. [Google Scholar]
- Wang, C.X.; You, X.; Gao, X.; Zhu, X.; Li, Z.; Zhang, C.; Wang, H.; Huang, Y.; Chen, Y.; Haas, H.; et al. On the Road to 6G: Visions, Requirements, Key Technologies, and Testbeds. IEEE Commun. Surv. Tutor. 2023, 25, 905–974. [Google Scholar] [CrossRef]
- Li, N.; Yue, C.; Guo, H.; Qiu, S.; Cao, X. Domain control strategy for the large-scale satellite cluster. Chin. Space Sci. 2023, 43, 18–28. [Google Scholar]
- Han, Z.; Xu, C.; Zhao, G.; Wang, S.; Cheng, K.; Yu, S. Time-Varying Topology Model for Dynamic Routing in LEO Satellite Constellation Networks. IEEE Trans. Veh. Technol. 2023, 72, 3440–3454. [Google Scholar] [CrossRef]
- Al-Khasawneh, M.A.S.; Faheem, M.; Aldhahri, E.A.; Alzahrani, A.; Alarood, A.A. A MapReduce Based Approach for Secure Batch Satellite Image Encryption. IEEE Access 2023, 11, 62865–62878. [Google Scholar] [CrossRef]
- Saini, D.; Garg, R.; Malik, R.; Prashar, D.; Faheem, M. HFRAS: Design of a high-density feature representation model for effective augmentation of satellite images. Signal Image Video Process. 2024, 18, 1393–1404. [Google Scholar] [CrossRef]
- He, P.; Hu, J.; Fan, X.; Wu, D.; Wang, R.; Cui, Y. Load-Balanced Collaborative Offloading for LEO Satellite Networks. IEEE Internet Things J. 2023, 10, 19075–19086. [Google Scholar] [CrossRef]
- Ji, Z.; Wu, S.; Jiang, C. Cooperative Multi-Agent Deep Reinforcement Learning for Computation Offloading in Digital Twin Satellite Edge Networks. IEEE J. Sel. Areas Commun. 2023, 41, 3414–3429. [Google Scholar] [CrossRef]
- Luglio, M.; Romano, S.P.; Roseti, C.; Zampognaro, F. Service Delivery Models for Converged Satellite-Terrestrial 5G Network Deployment: A Satellite-Assisted CDN Use-Case. IEEE Netw. 2019, 33, 142–150. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; An, K.; Zheng, G.; Chatzinotas, S.; Guo, D. Stochastic Geometry-Based Analysis of Cache-Enabled Hybrid Satellite-Aerial-Terrestrial Networks With Non-Orthogonal Multiple Access. IEEE Trans. Wirel. Commun. 2022, 21, 1272–1287. [Google Scholar] [CrossRef]
- Li, C.; He, W.; Yao, H.; Mai, T.; Wang, J.; Guo, S. Knowledge Graph Aided Network Representation and Routing Algorithm for LEO Satellite Networks. IEEE Trans. Veh. Technol. 2023, 72, 5195–5207. [Google Scholar] [CrossRef]
- Liu, S.; Liang, C. A Novel Adaptive Data Prefetching Scheme in Satellite-ground Integrated Networks with Edge Caching. In Proceedings of the 2022 27th Asia Pacific Conference on Communications (APCC), Jeju Island, Republic of Korea, 19–21 October 2022; pp. 615–620. [Google Scholar]
- Han, D.; Peng, H.; Wu, H.; Liao, W.; Shen, X.S. Joint Cache Placement and Content Delivery in Satellite-Terrestrial Integrated C-RANs. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Liang, Q.; Liu, Y.; Tang, W. Joint Cache Placement and Content Scheduling in Integrated LEO Satellite-Terrestrial Networks. In Proceedings of the 2022 IEEE/CIC International Conference on Communications in China (ICCC), Foshan, China, 11–13 August 2022; pp. 642–648. [Google Scholar]
- Han, D.; Liao, W.; Peng, H.; Wu, H.; Wu, W.; Shen, X. Joint Cache Placement and Cooperative Multicast Beamforming in Integrated Satellite-Terrestrial Networks. IEEE Trans. Veh. Technol. 2022, 71, 3131–3143. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, M.; Herrería-Alonso, S.; Suárez-Gonzalez, A.; López-Ardao, J.C.; Rodríguez-Rubio, R. Cache Placement in an NDN-Based LEO Satellite Network Constellation. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 3579–3587. [Google Scholar] [CrossRef]
- Liu, S.; Hu, X.; Wang, Y.; Cui, G.; Wang, W. Distributed Caching Based on Matching Game in LEO Satellite Constellation Networks. IEEE Commun. Lett. 2018, 22, 300–303. [Google Scholar] [CrossRef]
- Tang, J.; Li, J.; Zhang, L.; Xue, K.; Sun, Q.; Lu, J. Content-Aware Routing based on Cached Content Prediction in Satellite Networks. In Proceedings of the GLOBECOM 2022—2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 4–8 December 2022; pp. 6541–6546. [Google Scholar]
- Gao, X.; Liu, R.; Kaushik, A.; Thompson, J.; Zhang, H.; Ma, Y. Dynamic Resource Management for Neighbor-based VNF Placement in Decentralized Satellite Networks. In Proceedings of the 2022 1st International Conference on 6G Networking (6GNet), Paris, France, 6–8 July 2022; pp. 1–5. [Google Scholar]
- Zhang, K.; Leng, S.; He, Y.; Maharjan, S.; Zhang, Y. Cooperative Content Caching in 5G Networks with Mobile Edge Computing. IEEE Wirel. Commun. 2018, 25, 80–87. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, N.; Zhang, S.; Yu, L.; Zhang, J.; Shen, X. Content Popularity Prediction towards Location-Aware Mobile Edge Caching. IEEE Trans. Multimed. 2019, 21, 915–929. [Google Scholar] [CrossRef]
- Gu, S.; Yu, Z.; Zhang, Q.; Huang, T. Energy-Aware Coded Transmission Strategy for Hierarchical Cooperative Caching Networks. IEEE Wirel. Commun. Lett. 2023, 12, 178–182. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Hossain, M.S.; Alhamid, M.F.; Guizani, M. Heterogeneous Information Network-Based Content Caching in the Internet of Vehicles. IEEE Trans. Veh. Technol. 2019, 68, 10216–10226. [Google Scholar] [CrossRef]
- Krishnendu, S.; Bharath, B.N.; Bhatia, V. Cache Enabled Cellular Network: Algorithm for Cache Placement and Guarantees. IEEE Wirel. Commun. Lett. 2019, 8, 1550–1554. [Google Scholar] [CrossRef]
- Zhang, S.; He, P.; Suto, K.; Yang, P.; Zhao, L.; Shen, X. Cooperative Edge Caching in User-Centric Clustered Mobile Networks. IEEE Trans. Mobile Comput. 2018, 17, 1791–1805. [Google Scholar] [CrossRef]
- Jiang, K.; Cao, Y.; Song, Y.; Zhou, H.; Wan, S.; Zhang, X. Asynchronous Federated and Reinforcement Learning for Mobility-Aware Edge Caching in IoVs. IEEE Internet Things J. 2024; in press. [Google Scholar] [CrossRef]
- Kim, M.S.; Hong, S.H.; Hong, C.S. Contents Delivering Network on Constellation Satellite using THz: Latency Minimization and Energy Optimization. In Proceedings of the 2023 International Conference on Information Networking (ICOIN), Bangkok, Thailand, 11–14 January 2023; pp. 764–768. [Google Scholar]
- Ho, C.M.; Tran, A.T.; Lee, C.; Hua, D.T.; Cho, S. Handover in Mobility-Aware Caching Strategy for LEO Satellite-Based Overlay System with Content Delivery Network. In Proceedings of the Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, Seoul, Reoublic of Korea, 17–20 October 2022; pp. 271–275. [Google Scholar]
- Wang, E.; Li, H.; Zhang, S. Load Balancing Based on Cache Resource Allocation in Satellite Networks. IEEE Access 2019, 7, 56864–56879. [Google Scholar] [CrossRef]
- Xu, R.; Di, X.; Chen, J.; Wang, H.; Luo, H.; Qi, H.; He, X.; Lei, W.; Zhang, S. A hybrid caching strategy for information-centric satellite networks based on node classification and popular content awareness. Comput. Commun. 2023, 197, 186–198. [Google Scholar] [CrossRef]
- Hao, Y.; Song, Z.; Zheng, Z.; Zhang, Q.; Miao, Z. Joint Communication, Computing, and Caching Resource Allocation in LEO Satellite MEC Networks. IEEE Access 2023, 11, 6708–6716. [Google Scholar] [CrossRef]
- Zhao, R.; Luo, J.; Ran, Y. Coverage-Aware Cooperative Caching and Efficient Content Distribution Schemes in LEO Satellite Networks. In Proceedings of the 1st ACM MobiCom Workshop on Satellite Networking and Computing, Madrid, Spain, 6 October 2023; pp. 31–36. [Google Scholar]
- Jiang, D.; Wang, F.; Lv, Z.; Mumtaz, S.; Al-Rubaye, S.; Tsourdos, A.; Dobre, O. QoE-Aware Efficient Content Distribution Scheme For Satellite-Terrestrial Networks. IEEE Trans. Mobile Comput. 2023, 22, 443–458. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Y.; Yuan, P.; Zhang, Q. TCSC: A Novel File Distribution Strategy in Integrated LEO Satellite-Terrestrial Networks. IEEE Trans. Veh. Technol. 2020, 69, 5426–5441. [Google Scholar] [CrossRef]
- Wu, H.; Li, J.; Lu, H.; Hong, P. A Two-Layer Caching Model for Content Delivery Services in Satellite-Terrestrial Networks. In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; pp. 1–6. [Google Scholar]
- Zhong, G.; Yan, J.; Kuang, L. QoE-driven social aware caching placement for terrestrial-satellite networks. China Commun. 2018, 15, 60–72. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, J.; Liu, X.; Long, K.; Leung, V.C.M. Joint Optimization of Caching Placement and Power Allocation in Virtualized Satellite-Terrestrial Network. IEEE Trans. Wirel. Commun. 2023, 22, 7932–7943. [Google Scholar] [CrossRef]
- Zhu, X.; Jiang, C.; Kuang, L.; Zhao, Z. Cooperative Multilayer Edge Caching in Integrated Satellite-Terrestrial Networks. IEEE Trans. Wirel. Commun. 2022, 21, 2924–2937. [Google Scholar] [CrossRef]
- Li, J.; Xue, K.; Liu, J.; Zhang, Y.; Fang, Y. An ICN/SDN-Based Network Architecture and Efficient Content Retrieval for Future Satellite-Terrestrial Integrated Networks. IEEE Netw. 2020, 34, 188–195. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Xu, Y.; Zhang, Q.; Yang, Z. Deep Learning-Enabled File Popularity-Aware Caching Replacement for Satellite-Integrated Content-Centric Networks. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 4551–4565. [Google Scholar] [CrossRef]
- Sridharan, R. The capacitated plant location problem. Eur. J. Oper. Res. 1995, 87, 203–213. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, B.; Qiu, Z.; Zheng, L. Using Inter-Mesh Links to Reduce End-to-End Delay in Walker Delta Constellations. IEEE Commun. Lett. 2021, 25, 3070–3074. [Google Scholar] [CrossRef]
- Systems Tool Kit (STK). Available online: https://www.agi.com/products/stk (accessed on 27 December 2023).
- STK’s Simplified General Perturbations No. 4 (SGP4) Propagator. Available online: https://pypi.org/project/sgp4 (accessed on 27 December 2023).
- Hagberg, A. Networkx: Network Analysis in Python. Available online: https://github.com/networkx (accessed on 27 December 2023).
- Azis, H.; Mallongi, R.d.; Lantara, D.; Salim, Y. Comparison of Floyd-Warshall Algorithm and Greedy Algorithm in Determining the Shortest Route. In Proceedings of the 2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT), Makassar, Indonesia, 6–7 November 2018; pp. 294–298. [Google Scholar]
- Paredes, M.; Riley, G.; Luján, M. Exploiting Parallelism and Vectorisation in Breadth-First Search for the Intel Xeon Phi. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 111–128. [Google Scholar] [CrossRef]
Name | Description of Symbols |
---|---|
Satellite–terrestrial Network | |
Satellite network with satellites V and links E. | |
Cloud center. | |
h | Number of network hops. |
Available storage resources for satellite v. | |
The v-th satellite and the e-th link. | |
Available bandwidth resources for link e. | |
Transmission delay for link e. | |
Maximum number of users provided content services for satellite v. | |
Sets of input and output degrees for satellite v. | |
Access satellite of cloud center . | |
Distance between cloud center and the access satellite. | |
Users and Contents | |
Set of users and the number of users. | |
The u-th user and the access satellite. | |
Bandwidth between user u and the access satellite. | |
Channel gain of retrieving the content for user u. | |
Noise power of retrieving the content for user u. | |
Transmission power of retrieving the content for user u. | |
Distance between user u and the access satellite. | |
c | Velocity of data transmission. |
Set of contents and the number of contents. | |
w | The w-th content. |
Data size and popularity for content w. | |
Maximum service delay of retrieving the content for user u. | |
Decision Variables | |
if user u retrieves content w. | |
if content w is deployed on satellite v. | |
if user u retrieves content w on satellite v. | |
if user u retrieves content w by link e. | |
if user u retrieves content w from cloud center . | |
Variables | |
Objective function of content services for all users. | |
Cost factor of storage resource usage for user u. | |
Cost factor of network bandwidth consumption for user u. | |
indicates satellite v can be viewed as satellite . |
Integrated Satellite–Terrestrial Network | ||||||
Name | Network Hops | Storage Resources | Bandwidth Resources | Sub-network Hops | Serviced Users | Shortest Paths |
Value | 2 | 1000 Mbits | 1000 Mbps | 1 | 30 | 4 |
Wireless Communication Channels between Users and Access Satellites and Contents | ||||||
Name | Bandwidth Resources | Transmission Power | Channel Gain | Noise Power | Data Size | Content Popularity |
Value | [2, 4] MHz | 3 W | −200 dB | −174 dbm | [100, 500] Mbits | [1, 10] |
M | Q | Storage Costs per User (Mbits) | Bandwidth Costs per User (Mbps) | Total Deployment Costs per User | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Greedy | BFS | CCRA | Greedy | BFS | CCRA | Greedy | BFS | CCRA | |||||||||||
200 | 5 | 27.43 | 36.62 | 26.11 | 34.65 | 22.19 | 32.03 | 5.47 | 2.74 | 5.63 | 2.62 | 5.39 | 3.26 | 14.26 | 16.29 | 13.82 | 15.43 | 12.11 | 14.77 |
10 | 34.10 | 45.19 | 33.20 | 43.21 | 31.74 | 42.16 | 7.32 | 6.07 | 7.21 | 5.95 | 6.38 | 5.63 | 18.03 | 21.72 | 17.61 | 20.85 | 16.52 | 20.24 | |
220 | 5 | 27.08 | 33.29 | 25.70 | 31.59 | 21.54 | 29.62 | 6.08 | 2.59 | 6.15 | 2.57 | 5.88 | 2.93 | 14.48 | 14.87 | 13.97 | 14.18 | 12.14 | 13.60 |
10 | 29.79 | 41.14 | 28.95 | 39.53 | 27.29 | 38.14 | 7.29 | 6.16 | 7.39 | 6.19 | 6.82 | 5.83 | 16.29 | 20.15 | 16.02 | 19.53 | 15.01 | 18.75 | |
240 | 5 | 24.84 | 32.63 | 22.86 | 31.17 | 18.40 | 28.98 | 7.19 | 3.08 | 7.24 | 3.09 | 7.02 | 3.24 | 14.25 | 14.90 | 13.49 | 14.32 | 11.57 | 13.53 |
10 | 28.47 | 38.16 | 27.68 | 36.46 | 26.18 | 35.74 | 8.89 | 6.25 | 8.56 | 6.20 | 7.97 | 5.69 | 16.72 | 19.01 | 16.21 | 18.31 | 15.25 | 17.71 | |
260 | 5 | 22.58 | 29.86 | 21.16 | 28.78 | 16.20 | 25.82 | 8.15 | 3.47 | 7.85 | 3.43 | 7.79 | 3.57 | 13.93 | 14.02 | 13.18 | 13.57 | 11.16 | 12.47 |
10 | 25.90 | 35.59 | 25.21 | 35.01 | 22.92 | 33.84 | 9.17 | 6.62 | 9.01 | 6.42 | 8.48 | 6.01 | 15.86 | 18.21 | 15.49 | 17.86 | 14.25 | 17.14 | |
280 | 5 | 22.41 | 29.62 | 20.48 | 28.36 | 15.43 | 25.41 | 8.68 | 4.04 | 8.40 | 4.02 | 8.30 | 4.08 | 14.17 | 14.27 | 13.23 | 13.76 | 11.15 | 12.61 |
10 | 24.02 | 33.99 | 23.25 | 33.04 | 20.85 | 32.22 | 9.46 | 7.28 | 9.40 | 7.04 | 8.73 | 6.76 | 15.29 | 17.97 | 14.94 | 17.45 | 13.57 | 16.94 | |
300 | 5 | 21.35 | 27.22 | 19.22 | 26.26 | 13.79 | 22.75 | 9.45 | 4.31 | 9.38 | 4.44 | 9.37 | 4.56 | 14.21 | 13.48 | 13.32 | 13.17 | 11.14 | 11.84 |
10 | 24.69 | 31.67 | 23.37 | 30.86 | 20.93 | 30.06 | 10.41 | 7.53 | 10.24 | 7.13 | 9.78 | 6.63 | 16.12 | 17.19 | 15.50 | 16.62 | 14.24 | 16.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Shao, Y.; Wang, Y.; Zhang, H.; Liu, Y. Cooperative Caching and Resource Allocation in Integrated Satellite–Terrestrial Networks. Electronics 2024, 13, 1216. https://doi.org/10.3390/electronics13071216
Gao X, Shao Y, Wang Y, Zhang H, Liu Y. Cooperative Caching and Resource Allocation in Integrated Satellite–Terrestrial Networks. Electronics. 2024; 13(7):1216. https://doi.org/10.3390/electronics13071216
Chicago/Turabian StyleGao, Xiangqiang, Yingzhao Shao, Yuanle Wang, Hangyu Zhang, and Yang Liu. 2024. "Cooperative Caching and Resource Allocation in Integrated Satellite–Terrestrial Networks" Electronics 13, no. 7: 1216. https://doi.org/10.3390/electronics13071216
APA StyleGao, X., Shao, Y., Wang, Y., Zhang, H., & Liu, Y. (2024). Cooperative Caching and Resource Allocation in Integrated Satellite–Terrestrial Networks. Electronics, 13(7), 1216. https://doi.org/10.3390/electronics13071216