A Ka-Band Two-Channel Two-Beam Receiver Based on a Substrate-Integrated Suspended Line
Abstract
:1. Introduction
2. Two-Channel Two-Beam Receiver Module
2.1. Working Principle
2.2. Schematic Design
3. Circuit Design
3.1. Layout Design
3.2. Substrate Integrated Suspended Line Design
3.3. Coplanar Waveguide (CPW)–Stripline (SL)–SISL Transition Design
3.4. Assembly Process
4. Receiver Module Measurement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, L.; Lei, L.; Zhang, K.; Wang, J.; Zhang, Q.; Li, Y.; Mao, L. Research progress and development trends on lowe-arth-orbit spaceborne multi-beam phased array antennas. Space Electron. Technol. 2022, 19, 1–11. [Google Scholar]
- Wang, J.; Liu, Y. Application and Prospect of Phased Array Antenna in Satellite Communications. Radio Eng. 2019, 49, 1076–1084. [Google Scholar]
- Ren, J.Q.; Zhou, H.G.; Zhou, N.; Liu, Q. Application of Phased Array Antenna and Fixed Multibeam Antenna in Communications Satellite Systems. Space Int. 2015, 443, 55–60. [Google Scholar]
- Wang, C.; Wang, Y.; Lian, P.; Xue, S.; Xu, Q.; Shi, Y.; Jia, Y.; Du, B.; Liu, J.; Tang, B. Space Phased Array Antenna Developments: A Perspective on Structural Design. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 44–63. [Google Scholar] [CrossRef]
- He, G.; Gao, X.; Sun, L.; Zhang, R. A Review of Multibeam Phased Array Antennas as LEO Satellite Constellation Ground Station. IEEE Access 2021, 9, 147142–147154. [Google Scholar] [CrossRef]
- Zeng, Q.; Chen, Z.; He, M.; Wang, S.; Liu, X.; Xu, H. Design of a Ka-Band Heterogeneous Integrated T/R Module of Phased Array Antenna. Electronics 2024, 13, 204. [Google Scholar] [CrossRef]
- Li, Z.; Sun, H.; Wu, H.; Zhang, S. An Ultra-Wideband Compact TR Module Based on 3-D Packaging. Electronics 2021, 10, 1435. [Google Scholar] [CrossRef]
- Ma, K.; Chan, K.T. Quasi-Planar Circuits with Air Cavities. PCT Patent WO/2007/149046, 27 December 2007. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2007149046 (accessed on 15 April 2024).
- Ma, K.; Yan, N.; Wang, Y. Recent Progress in SISL Circuits and Systems: Review of Passive and Active Circuits Demonstrating SISL’s Low Loss and Self-Packaging and Showcasing the Merits of Metallic, Shielded, Suspended Lines. IEEE Microw. Mag. 2021, 22, 49–71. [Google Scholar] [CrossRef]
- Cai, J.; Dong, Y. Miniaturized, Low Loss Bandpass Filters Based on SISL Technology with Improved Stopband Rejection. In Proceedings of the 2023 IEEE MTT-S International Wireless Symposium (IWS), Qingdao, China, 16–19 May 2023; pp. 1–3. [Google Scholar]
- Kenney, R.H.; Walker, C.J.; Sigmarsson, H.H.; McDaniel, J.W. A Varactor-Based Tunable Combline Bandpass Filter Using Suspended Integrated Stripline (SISL). IEEE J. Miniaturization Air Space Syst. 2021, 2, 112–116. [Google Scholar] [CrossRef]
- Ma, L.; Wu, Y.; He, C.; Wang, W.; Liu, Y. A wideband filter-integrated coupler using substrate integrated suspended line (SISL) technology with patterned substrate. In Proceedings of the 2018 International Applied Computational Electromagnetics Society Symposium—China (ACES), Beijing, China, 29 July–1 August 2018; pp. 1–2. [Google Scholar]
- Xiao, J.; Ren, X.; Guo, K. High selective dual-band filtering power divider using self-packaged SISL. Electron. Lett. 2020, 56, 937–940. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, H.; Feng, L.; Zhang, X.; Zhang, X.; Shi, W. Compact wideband filtering Balun Based on SISL Technology. Int. J. Microw. Wirel. Technol. 2023, 15, 1656–1661. [Google Scholar] [CrossRef]
- Zheng, Z.; Tan, X.; Li, D.; Li, M.; Chen, Q. Compact Dual-Band SISL Filtering Antennas with High Selectivity Based on Dual Gap-Coupled Patches. IEEE Trans. Antennas Propag. 2023, 71, 7892–7902. [Google Scholar] [CrossRef]
- Luo, T.; Yang, W.; Xue, Q.; Che, W. A High-Efficiency SISL-Based Slot Antenna Array for Wireless Power Transmission Application. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 674–678. [Google Scholar] [CrossRef]
- Aakash; Rai, A.K.; Vishwakarma, R.; Bhattacharya, S.; Srivastava, K.V. Dual-Circularly Polarized Antenna Array for Automotive Radar at 77 GHz based on SISL Topology. In Proceedings of the 2023 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), Ahmedabad, India, 10–14 December 2023; pp. 1–4. [Google Scholar]
- Hong, X.; Ma, K.; Wang, Y. An Ultra-Low Noise LNA Based on SISL Platform for Ka-band Satellite Communication. IEEE Microw. Compon. Lett. 2024, 34, 199–202. [Google Scholar] [CrossRef]
- Liang, W.; Ma, K.; Chen, X.; Wang, Y. FR4-Based Low Phase Noise SISL VCO Using Tunable Weakly Coupled Resonators. IEEE Microw. Compon. Lett. 2022, 32, 72–75. [Google Scholar] [CrossRef]
- Wang, J.; Wu, W. Millimeter Wave Integrated Circuits Design and Application; Xidian University Press: Xi’an, China, 1985. [Google Scholar]
- Wang, J.; Li, D.; Shi, L.; Zhang, L.; Chen, X.; Chen, Q. A DC-40 GHz Substrate Integrated Suspended Line (SISL) to GCPW Transition. In Proceedings of the 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 14–17 May 2023; pp. 1–3. [Google Scholar]
- Yang, D.; Zhao, Y. A Ka Band Four-Channel Short Brick-Type 3D Integrated T/R Microsystem with Silicon-Based MEMS Technology. IC Des. 2023, 48, 506–511. [Google Scholar]
- Yu, F.; Guo, X.; Ma, S.; Wang, C.; Feng, G.; Wang, Z. Design and Fabrication of a TR Microsystem in Ka-Band with Si-Based 3D Heterogeneous Integration. In Proceedings of the IEEE Transactions on Components, Packaging and Manufacturing Technology, Aurora, CO, USA, 28–31 May 2024. [Google Scholar]
Components | Gain of Components (dB) | Noise Figure of Components (dB) | Link Gain (dB) | Link Noise Figure (dB) |
---|---|---|---|---|
Connector Soldering | −0.8 | 0.8 | −0.8 | 0.800 |
LNA1 | 27 | 1.7 | 26.2 | 2.500 |
Attenuator | −2 | 2 | 24.2 | 2.503 |
LNA2 | 27 | 1.7 | 51.2 | 2.508 |
6-bit Phase Shifter and Attenuator Chip | −17 | 17 | 34.2 | 2.509 |
2:1 Combiner | −4 | 4 | 30.2 | 2.510 |
Connector Soldering | −0.8 | 0.8 | 29.4 | 2.511 |
Parameter | Value (mm) |
---|---|
w1 | 0.24 |
w2 | 0.16 |
w3 | 0.6 |
w4 | 2 |
gap | 0.10 |
L | 0.9 |
A | B | C | D | |
---|---|---|---|---|
Typical Value | ≥0.2 mm | ≥0.4 mm | ≥0.2 mm | ≥0.4 mm |
Minimum Value | 0 mm | 0.25 mm | 0.15 mm | 0.3 mm |
Time | Module | Frequency (GHz) | Technique | Size (mm) | Gain (dB) | NF (dB) |
---|---|---|---|---|---|---|
2023 [22] | 4-channels T/R module | 33~37 | Silicon-based MEMs, TSV, 3D integration | 18 × 19.5 × 3 | 35 | 4.6 |
2024 [6] | 4-channels T/R module | 22~26 | LTCC, BGA, multi-material heterogeneous integration | 10.8 × 10 × 3 | 26 | 4.4 |
2024 [23] | 4-channels T/R module | 33~35 | Silicon 3D heterogeneous-integration | 9.5 × 9.8 × 2 | 25.5 | 5.7 |
this work | 2-channels 2-beams R module | 28~30 | PCB, SISL | 55 × 55 × 1.8 | 28.5 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Ma, K.; Li, S.; Liu, G.; Wang, Y. A Ka-Band Two-Channel Two-Beam Receiver Based on a Substrate-Integrated Suspended Line. Electronics 2024, 13, 1582. https://doi.org/10.3390/electronics13081582
Xu H, Ma K, Li S, Liu G, Wang Y. A Ka-Band Two-Channel Two-Beam Receiver Based on a Substrate-Integrated Suspended Line. Electronics. 2024; 13(8):1582. https://doi.org/10.3390/electronics13081582
Chicago/Turabian StyleXu, Hui, Kaixue Ma, Shuantao Li, Gaojian Liu, and Yongqiang Wang. 2024. "A Ka-Band Two-Channel Two-Beam Receiver Based on a Substrate-Integrated Suspended Line" Electronics 13, no. 8: 1582. https://doi.org/10.3390/electronics13081582
APA StyleXu, H., Ma, K., Li, S., Liu, G., & Wang, Y. (2024). A Ka-Band Two-Channel Two-Beam Receiver Based on a Substrate-Integrated Suspended Line. Electronics, 13(8), 1582. https://doi.org/10.3390/electronics13081582