Comparative Study on Schottky Contact Behaviors between Ga- and N-Polar GaN with SiNx Interlayer
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baliga, B.J. Gallium nitride devices for power electronic applications. Semicond. Sci. Technol. 2013, 28, 074011. [Google Scholar] [CrossRef]
- Amano, H.; Baines, Y.; Beam, E.; Borga, M.; Bouchet, T.; Chalker, P.R.; Charles, M.; Chen, K.J.; Chowdhury, N.; Chu, R.M.; et al. The 2018 GaN power electronics roadmap. J. Phys. D-Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Laurent, M.A.; Gupta, G.; Suntrup, D.J.; DenBaars, S.P.; Mishra, U.K. Barrier height inhomogeneity and its impact on (Al, In, Ga)N Schottky diodes. J. Appl. Phys. 2016, 119, 064501. [Google Scholar] [CrossRef]
- Kim, H. Vertical Schottky Contacts to Bulk GaN Single Crystals and Current Transport Mechanisms: A Review. J. Electron. Mater. 2021, 50, 6688–6707. [Google Scholar] [CrossRef]
- Fu, H.Q.; Fu, K.; Chowdhury, S.; Palacios, T.; Zhao, Y.J. Vertical GaN Power Devices: Device Principles and Fabrication Technologies—Part I. IEEE Trans. Electron Devices 2021, 68, 3200–3211. [Google Scholar] [CrossRef]
- Mönch, W. On the alleviation of Fermi-level pinning by ultrathin insulator layers in Schottky contacts. J. Appl. Phys. 2012, 111, 073706. [Google Scholar] [CrossRef]
- Yue, Y.Z.; Hao, Y.; Feng, Q.; Zhang, J.C.; Ma, X.H.; Ni, J.Y. GaN MOS-HEMT using ultra-thin Al2O3 dielectric grown by atomic layer deposition. Chin. Phys. Lett. 2007, 24, 2419–2422. [Google Scholar]
- He, J.B.; Hua, M.Y.; Zhang, Z.F.; Chen, K.J. Performance and VTH Stability in E-Mode GaN Fully Recessed MIS-FETs and Partially Recessed MIS-HEMTs with LPCVD-SiNx/PECVD-SiNxGate Dielectric Stack. IEEE Trans. Electron Devices 2018, 65, 3185–3191. [Google Scholar] [CrossRef]
- Cai, Y.T.; Zhang, Y.L.; Liang, Y.; Mitrovic, I.Z.; Wen, H.Q.; Liu, W.; Zhao, C.Z. Low ON-State Resistance Normally-OFF AlGaN/GaN MIS-HEMTs With Partially Recessed Gate and ZrOxCharge Trapping Layer. IEEE Trans. Electron Devices 2021, 68, 4310–4316. [Google Scholar] [CrossRef]
- Liu, C.; Chor, E.F.; Tan, L.S. Enhanced device performance of AlGaN/GaN HEMTs using HfO2 high-k dielectric for surface passivation and gate oxide. Semicond. Sci. Technol. 2007, 22, 522–527. [Google Scholar] [CrossRef]
- Keller, S.; Li, H.R.; Laurent, M.; Hu, Y.L.; Pfaff, N.; Lu, J.; Brown, D.F.; Fichtenbaum, N.A.; Speck, J.S.; DenBaars, S.P.; et al. Recent progress in metal-organic chemical vapor deposition of (000(1)over-bar) N-polar group-III nitrides. Semicond. Sci. Technol. 2014, 29, 113001. [Google Scholar] [CrossRef]
- Dai, Y.J.; Guo, W.; Chen, L.; Xu, H.Q.; AlQatari, F.; Guo, C.Y.; Peng, X.C.; Tang, K.; Liao, C.H.; Li, X.H.; et al. Polarization modulation of 2DEG toward plasma-damage-free GaN HEMT isolation. Appl. Phys. Lett. 2022, 121, 012104. [Google Scholar] [CrossRef]
- Dasgupta, S.; Nidhi; Brown, D.F.; Wu, F.; Keller, S.; Speck, J.S.; Mishra, U.K. Ultralow nonalloyed Ohmic contact resistance to self aligned N-polar GaN high electron mobility transistors by In(Ga)N regrowth. Appl. Phys. Lett. 2010, 96, 143504. [Google Scholar] [CrossRef]
- Sheikhi, M.; Li, J.M.; Meng, F.P.; Li, H.W.; Guo, S.P.; Liang, L.Y.; Cao, H.T.; Gao, P.Q.; Ye, J.C.; Guo, W. Polarity Control of GaN and Realization of GaN Schottky Barrier Diode Based on Lateral Polarity Structure. IEEE Trans. Electron Devices 2017, 64, 4424–4429. [Google Scholar] [CrossRef]
- Hatui, N.; Krishna, A.; Li, H.; Gupta, C.; Romanczyk, B.; Acker-James, D.; Ahmadi, E.; Keller, S.; Mishra, U.K. Ultra-high silicon doped N-polar GaN contact layers grown by metal-organic chemical vapor deposition. Semicond. Sci. Technol. 2020, 35, 095002. [Google Scholar] [CrossRef]
- Lu, J.; Zheng, X.; Guidry, M.; Denninghoff, D.; Ahmadi, E.; Lal, S.; Keller, S.; DenBaars, S.P.; Mishra, U.K. Engineering the (In, Al, Ga)N back-barrier to achieve high channel-conductivity for extremely scaled channel-thicknesses in N-polar GaN high-electron-mobility-transistors. Appl. Phys. Lett. 2014, 104, 092107. [Google Scholar] [CrossRef]
- Suemitsu, T.; Makabe, I. Effective Schottky Barrier Height Model for N-Polar and Ga-Polar GaN by Polarization-Induced Surface Charges with Finite Thickness. Phys. Status Solidi B—Basic Solid State Phys. 2020, 257, 1900528. [Google Scholar] [CrossRef]
- Khachariya, D.; Szymanski, D.; Sengupta, R.; Reddy, P.; Kohn, E.; Sitar, Z.; Collazo, R.; Pavlidis, S. Chemical treatment effects on Schottky contacts to metalorganic chemical vapor deposited n-type N-polar GaN. J. Appl. Phys. 2020, 128, 064501. [Google Scholar] [CrossRef]
- Reddy, P.; Bryan, I.; Bryan, Z.; Guo, W.; Hussey, L.; Collazo, R.; Sitar, Z. The effect of polarity and surface states on the Fermi level at III-nitride surfaces. J. Appl. Phys. 2014, 116, 123701. [Google Scholar] [CrossRef]
- Liu, Z.X.; Wu, Q.S.; Wang, Y.P.; Qiu, Q.L.; Zhang, J.W.; Wu, Z.S.; Liu, Y. Mechanism of high conduction on the N polar face of GaN. J. Appl. Phys. 2022, 131, 235701. [Google Scholar] [CrossRef]
- Hu, J.; Nainani, A.; Sun, Y.; Saraswat, K.C.; Wong, H.S.P. Impact of fixed charge on metal-insulator-semiconductor barrier height reduction. Appl. Phys. Lett. 2011, 99, 252104. [Google Scholar] [CrossRef]
- Li, Y.; Hu, X.; Song, Y.; Su, Z.; Wang, W.; Jia, H.; Wang, W.; Jiang, Y.; Chen, H. The role of AlN thickness in MOCVD growth of N-polar GaN. J. Alloys Compd. 2021, 884, 161134. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, Y.; Yang, F.; Huang, Z.; Yan, L.; Li, P.; Chi, C.; Zhao, D.; Zhang, B.; Du, G. Study of N-polar GaN growth with a high resistivity by metal-organic chemical vapor deposition. Vacuum 2015, 119, 63–67. [Google Scholar] [CrossRef]
- Li, C.G.; Zhang, K.; Zeng, Q.Y.; Wang, Q.; Li, Z.L.; Zhao, W.; Chen, Z.T. Effect of V/III ratio on the surface morphologies of N-polar GaN films grown on offcut sapphire substrates. J. Cryst. Growth 2020, 536, 125599. [Google Scholar] [CrossRef]
- Keller, S.; Fichtenbaum, N.; Wu, F.; Brown, D.; Rosales, A.; DenBaars, S.; Speck, J.; Mishra, U. Influence of the substrate misorientation on the properties of N-polar GaN films grown by metal organic chemical vapor deposition. J. Appl. Phys. 2007, 102, 083546. [Google Scholar] [CrossRef]
- Mohanty, S.; Sayed, I.; Jian, Z.A.; Mishra, U.; Ahmadi, E. Investigation and optimization of HfO2 gate dielectric on N-polar GaN: Impact of surface treatments, deposition, and annealing conditions. Appl. Phys. Lett. 2021, 119, 042901. [Google Scholar] [CrossRef]
- Guo, W.; Xu, H.Q.; Chen, L.; Yu, H.B.; Jiang, J.A.; Sheikhi, M.; Li, L.; Dai, Y.J.; Cui, M.; Sun, H.D.; et al. Polarity control and fabrication of lateral polarity structures of III-nitride thin films and devices: Progress and prospects. J. Phys. D—Appl. Phys. 2020, 53, 483002. [Google Scholar] [CrossRef]
- Guo, W.; Sun, H.D.; Torre, B.; Li, J.M.; Sheikhi, M.; Jiang, J.A.; Li, H.W.; Guo, S.P.; Li, K.H.; Lin, R.H.; et al. Lateral-Polarity Structure of AlGaN Quantum Wells: A Promising Approach to Enhancing the Ultraviolet Luminescence. Adv. Funct. Mater. 2018, 28, 1802395. [Google Scholar] [CrossRef]
- Mita, S.; Collazo, R.; Rice, A.; Tweedie, J.; Xie, J.Q.; Dalmau, R.; Sitar, Z. Impact of gallium supersaturation on the growth of N-polar GaN. In Proceedings of the International Workshop on Nitride Semiconductors (IWN)/Fall Meeting of the European-Materials-Research-Society (E-MRS)/Symposium N/Symposium H, Tampa, FL, USA, 19–24 September 2010. [Google Scholar]
- Wang, H.-C.; Lumbantoruan, F.J.; Hsieh, T.-E.; Wu, C.-H.; Lin, Y.-C.; Chang, E.Y. High-Performance LPCVD-SiN x/InAlGaN/GaN MIS-HEMTs With 850-V 0.98 mΩ·cm 2 for Power Device Applications. IEEE J. Electron Devices Soc. 2018, 6, 1136–1141. [Google Scholar] [CrossRef]
- Jing, G.J.; Wang, X.H.; Huang, S.; Jiang, Q.M.; Deng, K.X.; Wang, Y.H.; Li, Y.K.; Fan, J.; Wei, K.; Liu, X.Y. Mechanism of Linearity Improvement in GaN HEMTs by Low Pressure Chemical Vapor Deposition-SiNx Passivation. IEEE Trans. Electron Devices 2022, 69, 6610–6615. [Google Scholar] [CrossRef]
- Boulard, F.; Gros, V.; Porzier, C.; Brunet, L.; Lapras, V.; Fournel, F.; Truffier-Boutry, D.; Autillo, D.; Ruault, P.; Keovisai, M.; et al. Bevel contamination management in 3D integration by localized SiO2 deposition. Microelectron. Eng. 2022, 265, 111875. [Google Scholar] [CrossRef]
- Nomoto, K.; Xing, H.G.; Jena, D.; Cho, Y. N-polar GaN pn junction diodes with low ideality factors. Appl. Phys. Express 2022, 15, 064004. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Yin, R.; Zhang, J.; Tao, M.; Xie, B.; Hao, Y.; Yang, X.; Wen, C.P.; Shen, B. Quasi-vertical GaN Schottky barrier diode on silicon substrate with 10 10 high on/off current ratio and low specific on-resistance. IEEE Electron Device Lett. 2020, 41, 329–332. [Google Scholar] [CrossRef]
- Reddy, P.; Washiyama, S.; Kaess, F.; Breckenridge, M.H.; Hernandez-Balderrama, L.H.; Haidet, B.B.; Alden, D.; Franke, A.; Sarkar, B.; Kohn, E.; et al. High temperature and low pressure chemical vapor deposition of silicon nitride on AlGaN: Band offsets and passivation studies. J. Appl. Phys. 2016, 119, 145702. [Google Scholar] [CrossRef]
- Eller, B.S.; Yang, J.L.; Nemanich, R.J. Electronic surface and dielectric interface states on GaN and AlGaN. J. Vac. Sci. Technol. A 2013, 31, 050807. [Google Scholar] [CrossRef]
- Khachariya, D.; Szymanski, D.; Breckenridge, M.H.; Reddy, P.; Kohn, E.; Sitar, Z.; Collazo, R.; Pavlidis, S. On the characteristics of N-polar GaN Schottky barrier contacts with LPCVD SiN interlayers. Appl. Phys. Lett. 2021, 118, 122103. [Google Scholar] [CrossRef]
- Reddy, P.; Khachariya, D.; Szymanski, D.; Breckenridge, M.H.; Sarkar, B.; Pavlidis, S.; Collazo, R.; Sitar, Z.; Kohn, E. Role of polarity in SiN on Al/GaN and the pathway to stable contacts. Semicond. Sci. Technol. 2020, 35, 055007. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, K.; Xiao, Y.; Ma, X.H.; Zhang, C.; Liu, G.G.; Lei, T.M.; Zheng, Y.K.; Huang, S.; Wang, N.; et al. Effect of SiN:Hx passivation layer on the reverse gate leakage current in GaN HEMTs. Chin. Phys. B 2018, 27, 097309. [Google Scholar] [CrossRef]
- Luo, B.; Johnson, J.W.; Ren, F.; Baik, K.W.; Pearton, S.J. Effect of plasma enhanced chemical vapor deposition of SiNx on n-GaN Schottky rectifiers. Solid-State Electron. 2002, 46, 705–710. [Google Scholar] [CrossRef]
- Hu, X.T.; Song, Y.M.; Su, Z.L.; Jia, H.Q.; Wang, W.X.; Jiang, Y.; Li, Y.F.; Chen, H. Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD. Chin. Phys. B 2022, 31, 038103. [Google Scholar] [CrossRef]
- Bryan, I.; Bryan, Z.; Mita, S.; Rice, A.; Tweedie, J.; Collazo, R.; Sitar, Z. Surface kinetics in AlN growth: A universal model for the control of surface morphology in III-nitrides. J. Cryst. Growth 2016, 438, 81–89. [Google Scholar] [CrossRef]
- Marini, J.; Leathersich, J.; Mahaboob, I.; Bulmer, J.; Newman, N.; Shahedipour-Sandvik, F.S. MOCVD growth of N-polar GaN on on-axis sapphire substrate: Impact of AlN nucleation layer on GaN surface hillock density. J. Cryst. Growth 2016, 442, 25–30. [Google Scholar] [CrossRef]
- Kim, H. Effect of KOH treatment on the Schottky barrier inhomogeneity in Ni/n-GaN. Mater. Sci. Semicond. Process 2010, 13, 51–55. [Google Scholar] [CrossRef]
- Isobe, K.; Akazawa, M. Impact of surface treatment on metal-work-function dependence of barrier height of GaN-on-GaN Schottky barrier diode. AIP Adv. 2018, 8, 115011. [Google Scholar] [CrossRef]
- Lakshmi, B.P.; Reddy, M.S.P.; Kumar, A.A.; Reddy, V.R. Electrical transport properties of Au/SiO2/n-GaN MIS structure in a wide temperature range. Curr. Appl. Phys. 2012, 12, 765–772. [Google Scholar] [CrossRef]
- Xu, N.; Deng, G.; Ma, H.; Yang, S.; Niu, Y.; Yu, J.; Wang, Y.; Zhao, J.; Zhang, Y. Effect of annealing on the electrical performance of N-polarity GaN Schottky barrier diodes. J. Semicond. 2024, 45, 042501. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Lyle, L.A.; Pal, H.; Das, K.K.; Porter, L.M.; Sarkar, B. Evidence of thermionic emission in forward biased β-Ga2O3 Schottky diodes at Boltzmann doping limit. J. Appl. Phys. 2022, 131, 025702. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Zhang, J.; Li, X.; Lv, Y.; Hao, Y. Current transport mechanism of high-performance novel GaN MIS diode. IEEE Electron Device Lett. 2021, 42, 304–307. [Google Scholar] [CrossRef]
- Khachariya, D.; Szymanski, D.; Reddy, P.; Kohn, E.; Sitar, Z.; Collazo, R.; Pavlidis, S. Schottky contacts to N-polar GaN with SiN interlayer for elevated temperature operation. Appl. Phys. Lett. 2022, 120, 172109. [Google Scholar] [CrossRef]
- Suda, J.; Yamaji, K.; Hayashi, Y.; Kimoto, T.; Shimoyama, K.; Namita, H.; Nagao, S. Nearly ideal current–voltage characteristics of Schottky barrier diodes formed on hydride-vapor-phase-epitaxy-grown GaN free-standing substrates. Appl. Phys. Express 2010, 3, 101003. [Google Scholar] [CrossRef]
- Qi, Y.; Zhu, Y.; Zhang, J.; Lin, X.; Cheng, K.; Jiang, L.; Yu, H. Evaluation of LPCVD SiN x gate dielectric reliability by TDDB measurement in Si-substrate-based AlGaN/GaN MIS-HEMT. IEEE Trans. Electron Devices 2018, 65, 1759–1764. [Google Scholar] [CrossRef]
- Patel, J.; Pramanik, T.; Sarkar, B. Analytical Model of Center Potential in GaN Vertical Junctionless Power Fin-MOSFETs for Fast Device-Design Optimization. IEEE Trans. Electron Devices 2023, 71, 99–106. [Google Scholar] [CrossRef]
- Pal, H.; Singh, S.; Guo, C.; Guo, W.; Badami, O.; Pramanik, T.; Sarkar, B. Lateral P–N Junction Photodiodes Using Lateral Polarity Structure GaN Films: A Theoretical Perspective. J. Electron. Mater. 2023, 52, 2148–2157. [Google Scholar] [CrossRef]
- Schmitsdorf, R.; Kampen, T.; Mönch, W. Explanation of the linear correlation between barrier heights and ideality factors of real metal-semiconductor contacts by laterally nonuniform Schottky barriers. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 1997, 15, 1221–1226. [Google Scholar] [CrossRef]
- Kumar, A.; Kapoor, R.; Garg, M.; Kumar, V.; Singh, R. Direct evidence of barrier inhomogeneities at metal/AlGaN/GaN interfaces using nanoscopic electrical characterizations. Nanotechnology 2017, 28, 26LT02. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Vasquez, J.M.T.; Ashai, A.; Yuvaraja, S.; Rajbhar, M.; Sarkar, B.; Li, X. On band-to-band tunneling and field management in NiOx/β-Ga2O3 PN junction and PiN diodes. J. Phys. D Appl. Phys. 2023, 56, 475104. [Google Scholar] [CrossRef]
SiNx | BB | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ga-polar | LPCVD | 101.35 | 102.18 | 2.09 | 1116.5 | 1116.58 | 1.83 | 1.28 | −0.49 | 2.55 | 2.9 |
PECVD | 101.84 | 101.46 | 1.35 | 1117.09 | 1116.58 | 1.83 | 0.22 | −0.61 | 2.67 | 2.11 | |
N-polar | LPCVD | 101.4 | 102.18 | 2.09 | 1116.55 | 1117.43 | 1.78 | 0.13 | 0.41 | 1.65 | 2.65 |
PECVD | 101.45 | 101.46 | 1.35 | 1117.76 | 1117.43 | 1.78 | 1.03 | 0.77 | 1.29 | 1.48 |
Misorientation Angle | Schottky Barrier Height (V) | Ideality Factor |
---|---|---|
N-polar 0.2° | 0.5 | 3.2 |
N-polar 1° | 0.68 | 2.4 |
N-polar 2° | 0.56 | 3.2 |
Ga-polar | 0.84 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Dai, Y.; Tang, K.; Luo, T.; Qi, S.; Singh, S.; Huang, L.; Ye, J.; Sarkar, B.; Guo, W. Comparative Study on Schottky Contact Behaviors between Ga- and N-Polar GaN with SiNx Interlayer. Electronics 2024, 13, 1679. https://doi.org/10.3390/electronics13091679
Yu Z, Dai Y, Tang K, Luo T, Qi S, Singh S, Huang L, Ye J, Sarkar B, Guo W. Comparative Study on Schottky Contact Behaviors between Ga- and N-Polar GaN with SiNx Interlayer. Electronics. 2024; 13(9):1679. https://doi.org/10.3390/electronics13091679
Chicago/Turabian StyleYu, Zhehan, Yijun Dai, Ke Tang, Tian Luo, Shengli Qi, Smriti Singh, Lu Huang, Jichun Ye, Biplab Sarkar, and Wei Guo. 2024. "Comparative Study on Schottky Contact Behaviors between Ga- and N-Polar GaN with SiNx Interlayer" Electronics 13, no. 9: 1679. https://doi.org/10.3390/electronics13091679
APA StyleYu, Z., Dai, Y., Tang, K., Luo, T., Qi, S., Singh, S., Huang, L., Ye, J., Sarkar, B., & Guo, W. (2024). Comparative Study on Schottky Contact Behaviors between Ga- and N-Polar GaN with SiNx Interlayer. Electronics, 13(9), 1679. https://doi.org/10.3390/electronics13091679