Real-Time Ideation Analyzer and Information Recommender
Abstract
:1. Introduction
2. Related Work
2.1. Ideation
2.2. Interdisciplinary and Transdisciplinary Work
2.3. Transformers and Large Language Models
3. General Approach
3.1. Ideation Support System
3.2. Data Sources
3.3. Recommendation Module
4. Results
4.1. Traditional Recommendation Evaluation Metrics
4.2. Human Validation of Recommendation Models
4.3. Qualitative User Testing of the Ideation Support System
5. Limitations and Discussion
5.1. Limitations
5.2. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
LLM | Large language model |
NLP | Natural language processing |
PRISMA | Preferred Reporting Items for Systematic reviews and Meta-Analyses |
RNN | Recurrent neural network |
BERT | Bidirectional Encoder Representations from Transformers |
SBERT | Sentence BERT |
UMAP | Uniform Manifold Approximation and Projection |
LLaMA | Large Language Model Meta AI |
SWA | Sliding window attention |
GQA | Group-query attention |
DBLP | Digital Bibliography & Library Project |
EU | European Union |
LDA | Latent Dirichlet allocation |
LSA | Latent semantic analysis |
NMF | Non-negative matrix factorization |
GPT | Generative pretraining transformer |
MDPI | Multidisciplinary Digital Publishing Institute |
MAP | Mean average precision |
NDCG | Normalized discounted cumulative gain |
DOAJ | Directory of open-access journals |
References
- Hesmer, A.; Thoben, K.D. Framework and IT-based toolset to support the early stages of collaborative innovation. In Proceedings of the 2009 IEEE International Technology Management Conference (ICE), Leiden, The Netherlands, 22–24 June 2009; pp. 1–14. [Google Scholar] [CrossRef]
- Hauge, J.B.; Duin, H.; Thoben, K.D. Applying serious games for supporting idea generation in collaborative innovation processes. In Proceedings of the 2008 IEEE International Technology Management Conference (ICE), Lisbon, Portugal, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Hesmer, A.; Hribernik, K.A.; Hauge, J.B.; Thoben, K.D. Supporting every day work in the early-stage innovation. In Proceedings of the 2007 IEEE International Technology Management Conference (ICE), Sophia Antipolis, France, 4–6 June 2007; pp. 1–8. [Google Scholar]
- Knoll, S.W.; Horton, G. The Impact of Stimuli Characteristics on the Ideation Process: An Evaluation of the Change of Perspective ‘Analogy’. In Proceedings of the 2011 44th Hawaii International Conference on System Sciences, Kauai, HI, USA, 4–7 January 2011; pp. 1–10. [Google Scholar] [CrossRef]
- Deo, S.R.; Hölttä-Otto, K. Application of External Stimuli During Ideation: Impact of Background and Inclination Based Stimuli on Novice Minds. In Proceedings of the 2017 International Conference on Transforming Engineering Education (ICTEE), Pune, India, 13–16 December 2017; pp. 1–12. [Google Scholar] [CrossRef]
- Knoll, S.W.; Horton, G. Changing the Perspective: Improving Generate thinkLets for Ideation. In Proceedings of the 2010 43rd Hawaii International Conference on System Sciences, Honolulu, HI, USA, 5–8 January 2010; pp. 1–10. [Google Scholar] [CrossRef]
- Bilgram, V.; Laarmann, F. Accelerating Innovation with Generative AI: AI-Augmented Digital Prototyping and Innovation Methods. IEEE Eng. Manag. Rev. 2023, 51, 18–25. [Google Scholar] [CrossRef]
- Joosten, J.; Bilgram, V.; Hahn, A.; Totzek, D. Comparing the Ideation Quality of Humans with Generative Artificial Intelligence. IEEE Eng. Manag. Rev. 2024, 1–10. [Google Scholar] [CrossRef]
- Bernstein, J. Transdisciplinarity: A Review of Its Origins, Development, and Current Issues. J. Res. Pract. 2015, 11, 1. [Google Scholar]
- Hoffmann, S.; Pohl, C.; Hering, J.G. Exploring transdisciplinary integration within a large research program: Empirical lessons from four thematic synthesis processes. Res. Policy 2017, 46, 678–692. [Google Scholar] [CrossRef]
- Rigolot, C. Transdisciplinarity as a discipline and a way of being: Complementarities and creative tensions. Humanit. Soc. Sci. Commun. 2020, 7, 100. [Google Scholar] [CrossRef]
- Klein, J.T. Evaluation of Interdisciplinary and Transdisciplinary Research: A Literature Review. Am. J. Prev. Med. 2008, 35, S116–S123. [Google Scholar] [CrossRef] [PubMed]
- Gaziulusoy, A.I.; Ryan, C.; McGrail, S.; Chandler, P.; Twomey, P. Identifying and addressing challenges faced by transdisciplinary research teams in climate change research. J. Clean. Prod. 2016, 123, 55–64. [Google Scholar] [CrossRef]
- Eldesoky, A.I.; Arafat, H.A.; El-Said, A.M. A novel ideation causal map with a new evaluation for Ideas Quality. In Proceedings of the 2009 International Conference on Computer Engineering & Systems, Cairo, Egypt, 14–16 December 2009; pp. 145–150. [Google Scholar] [CrossRef]
- Iyer, L.R.; Venkatesan, V.; Minai, A.A. Neurocognitive spotlights: Configuring domains for ideation. In Proceedings of the 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar] [CrossRef]
- Kerr, C.I.V.; Phaal, R.; Probert, D.R. Addressing the cognitive and social influence inhibitors during the ideation stages of technology roadmapping workshops. In Proceedings of the PICMET ’09—2009 Portland International Conference on Management of Engineering & Technology, Portland, OR, USA, 2–6 August 2009; pp. 2475–2483. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Sina, L.B.; Secco, C.A.; Blazevic, M.; Nazemi, K. Hybrid Forecasting Methods—A Systematic Review. Electronics 2023, 12, 2019. [Google Scholar] [CrossRef]
- Badura, V.; Read, A.; Briggs, R.O.; de Vreede, G.J. Coding for Unique Ideas and Ambiguity: Measuring the Effects of a Convergence Intervention on the Artifact of an Ideation Activity. In Proceedings of the 2010 43rd Hawaii International Conference on System Sciences, Honolulu, HI, USA, 5–8 January 2010; pp. 1–10. [Google Scholar] [CrossRef]
- Zimmerling, E.; Höflinger, P.J.; Sandner, P.; Welpe, I.M. Increasing the Creative Output at the Fuzzy Front End of Innovation—A Concept for a Gamified Internal Enterprise Ideation Platform. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, 5–8 January 2016; pp. 837–846. [Google Scholar] [CrossRef]
- Vivacqua, A.; Marques, L.C.; de Souza, J.M. Assisting meeting facilitation through automated analysis of group dynamics. In Proceedings of the 2008 12th International Conference on Computer Supported Cooperative Work in Design, Xi’an, China, 16–18 April 2008; pp. 951–956. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Q.; Zhao, X.; Zhao, Y. Empirical Evidence of Idea Generation in Open Innovation Community. Int. J. Crowd Sci. 2023, 7, 40–45. [Google Scholar] [CrossRef]
- Lawrence, R.J. Deciphering Interdisciplinary and Transdisciplinary Contributions. Transdiscipl. J. Eng. Sci. 2010, 1, 111–116. [Google Scholar] [CrossRef] [PubMed]
- de Jong, S.P.; Wardenaar, T.; Horlings, E. Exploring the promises of transdisciplinary research: A quantitative study of two climate research programmes. Res. Policy 2016, 45, 1397–1409. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2023, arXiv:1706.03762. [Google Scholar]
- Pohan, H.I.; Warnars, H.L.H.S.; Soewito, B.; Gaol, F.L. Recommender System Using Transformer Model: A Systematic Literature Review. In Proceedings of the 2022 1st International Conference on Information System & Information Technology (ICISIT), Yogyakarta, Indonesia, 27–28 July 2022; pp. 376–381. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv 2019, arXiv:1810.04805. [Google Scholar]
- McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv 2020, arXiv:1802.03426. [Google Scholar]
- Campello, R.J.G.B.; Moulavi, D.; Sander, J. Density-Based Clustering Based on Hierarchical Density Estimates. In Advances in Knowledge Discovery and Data Mining; Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 160–172. [Google Scholar]
- Grootendorst, M. BERTopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv 2022, arXiv:2203.05794. [Google Scholar]
- Reimers, N.; Gurevych, I. Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. arXiv 2019, arXiv:1908.10084. [Google Scholar]
- Jiang, A.Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.; Chaplot, D.S.; de las Casas, D.; Bressand, F.; Lengyel, G.; Lample, G.; Saulnier, L.; et al. Mistral 7B. arXiv 2023, arXiv:2310.06825. [Google Scholar]
- Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.; Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale, S.; et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv 2023, arXiv:2307.09288. [Google Scholar]
- React. Available online: https://react.dev/ (accessed on 11 April 2024).
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Breytenbach, J.; Kariem, I. A Living Labs Approach to Manage Co-created Design Knowledge through Ideation Artefacts. In Proceedings of the 2020 6th International Conference on Information Management (ICIM), London, UK, 27–29 March 2020; pp. 343–349. [Google Scholar] [CrossRef]
- Publications Office. CORDIS—EU Research Projects under HORIZON EUROPE (2021–2027); Publications Office of the European Union: Luxembourg, 2022. [Google Scholar] [CrossRef]
- WikiCFP: Call For Papers of Conferences, Workshops and Journals. Available online: http://www.wikicfp.com/cfp/ (accessed on 11 April 2024).
- Blazevic, M.; Sina, L.B.; Secco, C.A.; Nazemi, K. Recommendation of Scientific Publications—A Real-Time Text Analysis and Publication Recommendation System. Electronics 2023, 12, 1699. [Google Scholar] [CrossRef]
- Blazevic, M.; Sina, L.B.; Secco, C.A.; Nazemi, K. Recommendations in Visual Analytics—An Analytical Approach for Elaboration in Science. In Proceedings of the 2023 27th International Conference Information Visualisation (IV), Tampere, Finland, 25–28 July 2023; pp. 259–267. [Google Scholar] [CrossRef]
- Honnibal, M.; Montani, I.; Van Landeghem, S.; Boyd, A. spaCy: Industrial-strength Natural Language Processing in Python. 2020. Available online: https://github.com/explosion/spaCy (accessed on 10 February 2024).
- Cohan, A.; Feldman, S.; Beltagy, I.; Downey, D.; Weld, D.S. SPECTER: Document-level Representation Learning using Citation-informed Transformers. arXiv 2020, arXiv:2004.07180. [Google Scholar]
- Su, H.; Shi, W.; Kasai, J.; Wang, Y.; Hu, Y.; Ostendorf, M.; Yih, W.-T.; Smith, N.A.; Zettlemoyer, L.; Yu, T. One Embedder, Any Task: Instruction-Finetuned Text Embeddings. arXiv 2023, arXiv:2212.09741. [Google Scholar]
- Nielsen, J.; Landauer, T.K. A mathematical model of the finding of usability problems. In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing Systems, Amsterdam, The Netherlands, 24–29 April 1993; Association for Computing Machinery: New York, NY, USA, 1993; pp. 206–213. [Google Scholar] [CrossRef]
- Järvelin, K.; Kekäläinen, J. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. 2002, 20, 422–446. [Google Scholar] [CrossRef]
- Calderón, F.H.; Cheng, L.K.; Lin, M.J.; Huang, Y.H.; Chen, Y.S. Content-Based Echo Chamber Detection on Social Media Platforms. In Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Vancouver, BC, Canada, 27–30 August 2019; pp. 597–600. [Google Scholar] [CrossRef]
- Kozitsin, I.V.; Chkhartishvili, A.G. Users’ Activity in Online Social Networks and the Formation of Echo Chambers. In Proceedings of the 2020 13th International Conference “Management of large-scale system development” (MLSD), Moscow, Russia, 28–30 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R. Research on the Influencing Factors of the User Information Cocoon Effect of Short Video Platforms Based on Personalized Recommendation Algorithms. In Proceedings of the 2022 2nd International Conference on Big Data Engineering and Education (BDEE), Chengdu, China, 5–7 August 2022; pp. 53–60. [Google Scholar] [CrossRef]
- Jesse, M.; Bauer, C.; Jannach, D. Intra-list similarity and human diversity perceptions of recommendations: The details matter. User Model. User Adapt. Interact. 2022, 33, 769–802. [Google Scholar] [CrossRef]
- Ziegler, C.N.; McNee, S.M.; Konstan, J.A.; Lausen, G. Improving recommendation lists through topic diversification. In Proceedings of the 14th International Conference on World Wide Web, Chiba, Japan, 10–14 May 2005; Association for Computing Machinery: New York, NY, USA, 2005; pp. 22–32. [Google Scholar] [CrossRef]
- Lazar, J.; Feng, J.H.; Hochheiser, H. Research Methods in Human-Computer Interaction, 2nd ed.; Morgan Kaufmann: Cambridge, MA, USA, 2017. [Google Scholar]
- Lewis, J.R. IBM Computer Usability Satisfaction Questionnaires: Psychometric Evaluation and Instructions for Use. Int. J. Hum. Comput. Interact. 1995, 7, 57. [Google Scholar] [CrossRef]
- Maalej, M.; Mtibaa, A.; Gargouri, F. Context Similarity Measure for Knowledge-Based Recommendation System. In Cooperative Design, Visualization, and Engineering; Luo, Y., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 77–84. [Google Scholar]
- Li, B.; Samsi, S.; Gadepally, V.; Tiwari, D. Clover: Toward Sustainable AI with Carbon-Aware Machine Learning Inference Service. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Denver, CO, USA, 12–17 November 2023; Association for Computing Machinery: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Boeckle, M.; Novak, J. Explorative analysis of applying collaborative visual annotations in online discussions to support the ideation of products or services. In Proceedings of the 2015 IEEE 19th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Calabria, Italy, 6–8 May 2015; pp. 159–164. [Google Scholar] [CrossRef]
- Shaw, T.; Arnason, K.; Belardo, S. The effects of computer mediated interactivity on idea generation: An experimental investigation. IEEE Trans. Syst. Man, Cybern. 1993, 23, 737–745. [Google Scholar] [CrossRef]
- Furue, N.; Shimogo, M.; Otsuka, A.; Yamashina, R.; Kubota, Y. The Effects of Forced Customer-Oriented Ideation on Technical Experts. In Proceedings of the 2022 Portland International Conference on Management of Engineering and Technology (PICMET), Portland, OR, USA, 7–11 August 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Reinig, B.; Briggs, R. Measuring the Quality of Ideation Technology and Techniques. In Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS’06), Kauai, HI, USA, 4–7 January 2006; Volume 1, p. 20. [Google Scholar] [CrossRef]
- Blazevic, M.; Sina, L.B.; Nazemi, K. Visual Collaboration—An Approach for Visual Analytical Collaborative Research. In Proceedings of the 2022 26th International Conference Information Visualisation (IV), Vienna, Austria, 19–22 July 2022; pp. 293–299. [Google Scholar] [CrossRef]
- Dogra, V.; Verma, S.; Kavita.; Woźniak, M.; Shafi, J.; Ijaz, M.F. Shortcut Learning Explanations for Deep Natural Language Processing: A Survey on Dataset Biases. IEEE Access 2024, 12, 26183–26195. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blazevic, M.; Sina, L.B.; Secco, C.A.; Siegel, M.; Nazemi, K. Real-Time Ideation Analyzer and Information Recommender. Electronics 2024, 13, 1761. https://doi.org/10.3390/electronics13091761
Blazevic M, Sina LB, Secco CA, Siegel M, Nazemi K. Real-Time Ideation Analyzer and Information Recommender. Electronics. 2024; 13(9):1761. https://doi.org/10.3390/electronics13091761
Chicago/Turabian StyleBlazevic, Midhad, Lennart B. Sina, Cristian A. Secco, Melanie Siegel, and Kawa Nazemi. 2024. "Real-Time Ideation Analyzer and Information Recommender" Electronics 13, no. 9: 1761. https://doi.org/10.3390/electronics13091761
APA StyleBlazevic, M., Sina, L. B., Secco, C. A., Siegel, M., & Nazemi, K. (2024). Real-Time Ideation Analyzer and Information Recommender. Electronics, 13(9), 1761. https://doi.org/10.3390/electronics13091761