A Hybrid Long Short-Term Memory with a Sentiment Analysis System for Stock Market Forecasting
Abstract
1. Introduction
2. The Proposed Hybrid LSTM and Sentiment Analysis System for Stock Market Forecasting
2.1. Dataset Preparation
2.2. Pre-Processing the Regulatory News Announcements
2.3. Extracting Features Using Bag of Words
2.4. Building a Predictive Model for Sentiment Analysis
2.5. Predicting Stock Prices with LSTM a Time Series Approach
2.6. A Hybrid LSTM and Sentiment Analysis System for Stock Market Forecasting
3. Performance Metrics for Classification Problems
Confusion Matrix
- Accuracy
- Precision
- Recall
- F1 Score
4. Experimental Results and Discussion
5. Standalone Sentiment Classifier Evaluation Against State-of-the-Art Sentiment Analysis Models
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
Bi-LSTM | Bidirectional Long Short-Term Memory |
BERT | Bidirectional Encoder Representations from Transformers |
BoW | Bag of Words |
FN | False Negatives |
FP | False Positives |
FTSE | Financial Times Stock Exchange |
GRU | Gated Recurrent Unit |
JSE | Jamaica Stock Exchange |
LSTM | Long Short-Term Memory |
RNN | Recurrent Neural Network |
RNA | Regulatory News Announcement |
TN | True Negatives |
TP | True Positives |
SVM | Support Vector Machine |
References
- Kirkpatrick, C.D., II; Dahlquist, J.R. Technical Analysis: The Complete Resource for Financial Market Technicians; FT Press: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Choudhuri, S. A Research on Trading of Sensex Stocks by Using RSI. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2019, 8, 14–22. [Google Scholar]
- Rodríguez-González, A.; García-Crespo, A.; Colomo-Palacios, R.; Guldrís Iglesias, F.; Gómez-Berbís, J.M. CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Expert Syst. Appl. 2011, 38, 11489–11500. [Google Scholar] [CrossRef]
- Taran-Moroan, A. The relative strength index revisited. Afr. J. Bus. Manag. 2011, 5, 5855–5862. [Google Scholar]
- Xiao, H. RSI and MACD indicators integrated: Evidence from S&P 500 and Li-Ning as an example. BCP Bus. Manag. 2023, 38, 255–261. [Google Scholar]
- Dan, I.G. Anghel Stock market efficiency and the MACD. Evidence from countries around the world. Procedia Econ. Financ. 2015, 32, 1414–1431. [Google Scholar]
- Huang, P.; Ni, Y. Board structure and stock price informativeness in terms of moving average rules. Q. Rev. Econ. Financ. 2017, 63, 161–169. [Google Scholar] [CrossRef]
- Shintani, M.; Yabu, T.; Nagakura, D. Spurious regressions in technical trading. J. Econom. 2012, 169, 301–309. [Google Scholar] [CrossRef]
- Heng, F.T.K.; Azizan, N.A.; Yeap, L.W. Technical trading systems as crys tal balls in reducing risk: The Malaysian stock market. Int. Bus. Manag. 2012, 6, 140–146. [Google Scholar] [CrossRef]
- Spulbar, C.M.; Ene, C.C. Predictive analytics in finance using the ARIMA model: Application for Bucharest Stock Exchange financial companies closing prices. Stud. Bus. Econ. 2024, 19, 30–49. [Google Scholar] [CrossRef]
- Farsi, M.; Hosahalli, D.; Manjunatha, B.R.; Gad, I.; Atlam, E.S.; Ahmed, A.; Elmarhomy, G.; Elmarhoumy, M.; Ghoneim, O.A. Parallel genetic algorithms for optimising the SARIMA model for better forecasting of the NCDC weather data. Alex. Eng. J. 2021, 60, 1299–1316. [Google Scholar] [CrossRef]
- Kobiela, D.; Krefta, D.; Krol, W.; Weichbroth, P. ARIMA vs LSTM on NASDAQ stock exchange data. Procedia Comput. Sci. 2022, 207, 3830–3839. [Google Scholar] [CrossRef]
- Zhang, Z. Comparison of LSTM and ARIMA in Price Forecasting: Evidence from Five Indexes. In Proceedings of the 2023 2nd International Conference on Economics, Smart Finance and Contemporary Trade (ESFCT 2023), Dali, China, 28–30 July 2023; Atlantis Press: Dordrecht, The Netherlands, 2023; pp. 40–46. [Google Scholar] [CrossRef]
- Kuang, S. A Comparison of Linear Regression, LSTM model and ARIMA model in Predicting Stock Price: A Case Study of HSBC’s Stock Price. BCP Bus. Manag. 2023, 44, 478–488. [Google Scholar] [CrossRef]
- Sen, P.; Roy, M.; Pal, P. Application of ARIMA for forecasting energy consumption and GHG emission: A case study of an Indian pig iron manufacturing organization. Energy 2016, 116, 1031–1038. [Google Scholar] [CrossRef]
- Ospina, R.; Gondim, J.A.M.; Leiva, V.; Castro, C. An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil. Mathematics 2023, 11, 3069. [Google Scholar] [CrossRef]
- Sirisha, U.M.; Belavagi, M.C.; Attigeri, G. Profit Prediction Using ARIMA, SARIMA and LSTM Models in Time Series Forecasting: A Comparison. IEEE Access 2022, 10, 124715–124727. [Google Scholar] [CrossRef]
- Dar, A.A.; Jain, A.; Malhotra, M.; Farooqi, A.R.; Albalawi, O.; Khan, M.S. Time Series analysis with ARIMA for historical stock data and future projections. Soft Comput. 2024, 28, 12531–12542. [Google Scholar] [CrossRef]
- Pokou, F.; Kamdem, J.S.; Benhmad, F. Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series. Comput. Econ. 2024, 63, 1349–1399. [Google Scholar] [CrossRef]
- Liu, K.; Zhou, J.; Dong, D. Improving stock price prediction using the long short-term memory model combined with online social networks. J. Behav. Exp. Financ. 2021, 30, 100507. [Google Scholar] [CrossRef]
- Dioubi, F.; Hundera, N.W.; Xu, H.; Zhu, X. Enhancing stock market predictions via hybrid external trend and internal components analysis and long short term memory model. J. King Saud Univ.-Comput. Inf. Sci. 2024, 36, 102252. [Google Scholar] [CrossRef]
- Kristiyanti, D.A.; Nova Pramudya, W.B.; Sanjaya, S.A. How can we predict transportation stock prices using artificial intelligence? Findings from experiments with Long Short-Term Memory based algorithms. Int. J. Inf. Manag. Data Insights 2024, 4, 100293. [Google Scholar] [CrossRef]
- Huang, X.; Wu, C.; Du, X.; Wang, H.; Ye, M. A novel stock trading utilizing long short term memory prediction and evolutionary operating-weights strategy. Expert Syst. Appl. 2024, 246, 123146. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, G.; Shen, D. The role of investor attention in predicting stock prices: The long short-term memory networks perspective. Financ. Res. Lett. 2021, 38, 101484. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, Y.; Kim, H.Y. Stock market forecasting using a multi-task approach integrating long short-term memory and the random forest framework. Appl. Soft Comput. 2022, 114, 108106. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Shirai, K.; Velcin, J. Sentiment analysis on social media for stock movement prediction. Expert Syst. Appl. 2015, 42, 9603–9611. [Google Scholar] [CrossRef]
- Zhen, K.; Xie, D.; Hu, X. A multi-feature selection fused with investor sentiment for stock price prediction. Expert Syst. Appl. 2025, 278, 127381. [Google Scholar] [CrossRef]
- Deng, S.; Luo, Q.; Zhu, Y.; Ning, H.; Yu, Y.; Gao, Y.; Shen, Q.; Shimada, T. Multi-sentiment fusion for stock price crash risk prediction using an interpretable ensemble learning method. Eng. Appl. Artif. Intell. 2024, 135, 108842. [Google Scholar] [CrossRef]
- Jing, N.; Wu, Z.; Wang, H. A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction. Expert Syst. Appl. 2021, 178, 115019. [Google Scholar] [CrossRef]
- Huang, J.Y.; Tung, C.L.; Lin, W.Z. Using Social Network Sentiment Analysis and Genetic Algorithm to Improve the Stock Prediction Accuracy of the Deep Learning-Based Approach. Int. J. Comput. Intell. Syst. 2023, 16, 93. [Google Scholar] [CrossRef]
- John, A.; Latha, Τ. Stock market prediction based on deep hybrid RNN model and sentiment analysis. Automatica 2023, 64, 981–995. [Google Scholar] [CrossRef]
- Bogle, S.A.; Potter, W.D. SentAMaL—A Sentiment Analysis Machine Learning Stock Predictive Model. In Proceedings of the International Conference on Artificial Intelligence (ICAI), The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), Las Vegas, NV, USA, 22–25 July 2015; pp. 610–615. [Google Scholar]
- Ko, C.; Chang, H. LSTM-based sentiment analysis for stock price forecast. PeerJ Comput. Sci. 2021, 7, e408. [Google Scholar] [CrossRef]
- Jin, S. Sentiment-Driven Forecasting LSTM Neural Networks for Stock Prediction-Case of China Bank Sector. Int. J. Adv. Comput. Sci. Appl. 2023, 14, 1. [Google Scholar] [CrossRef]
- Sreyash, U.; Bijit, G.; Suresh, A. Stock Market Prediction Using LSTM and Sentiment Analysis. Turk. J. Comput. Math. Educ. 2021, 12, 4653–4658. [Google Scholar]
- Ouf, S.; El Hawary, M.; Aboutabl, A.; Adel, S. A Deep Learning-Based LSTM for Stock Price Prediction Using Twitter Sentiment Analysis. (IJACSA) Int. J. Adv. Comput. Sci. Appl. 2024, 15, 207. [Google Scholar] [CrossRef]
- Liagkouras, K.; Metaxiotis, K. Extracting Sentiment from Business News Announcements for More Efficient Decision Making. In Advances in Artificial Intelligence-Empowered Decision Support Systems. Learning and Analytics in Intelligent Systems; Tsihrintzis, G.A., Virvou, M., Doukas, H., Jain, L.C., Eds.; Springer: Cham, Switzerland, 2024; Volume 39. [Google Scholar] [CrossRef]
- Ghalyan, I.F. Capacitive empirical risk function-based bag-of-words and pattern classification processes. Pattern Recognit. 2023, 139, 109482. [Google Scholar] [CrossRef]
- Dey, A.; Jenamani, M.; Thakkar, J.J. Senti-N-Gram: An n-gram lexicon for sentiment analysis. Expert Syst. Appl. 2018, 103, 92–105. [Google Scholar] [CrossRef]
- Liagkouras, K.; Metaxiotis, K. Stock Market Forecasting by Using Support Vector Machines. In Machine Learning Paradigms. Learning and Analytics in Intelligent Systems; Tsihrintzis, G., Jain, L., Eds.; Springer: Cham, Switzerland, 2020; Volume 18. [Google Scholar] [CrossRef]
- Aftan, S.; Shah, H. A survey on BERT and its applications. In Proceedings of the 20th Learning and Technology Conference (L&T), Jeddah, Saudi Arabia, 26 January 2023; IEEE: Piscataway, NJ, USA, 2023. [Google Scholar] [CrossRef]
- He, P.; Gao, J.; Chen, W. DeBERTaV3: Improving DeBERTa Using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing. arXiv 2021, arXiv:2111.09543. [Google Scholar]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019; pp. 4171–4186. [Google Scholar] [CrossRef]
- Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. In Proceedings of the NeurIPS EMC Workshop, Vancouver, BC, Canada, 13 December 2019. [Google Scholar]
- Rogers, A.; Kovaleva, O.; Rumshisky, A. A primer in BERTology: What we know about how BERT works. In Transactions of the Association for Computational Linguistics; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; Volume 8, pp. 842–866. [Google Scholar] [CrossRef]
- Liu, S. Sentiment Analysis of Yelp Reviews: A Comparison of Techniques and Models. arXiv 2020, arXiv:2004.13851. [Google Scholar] [CrossRef]
- He, H.; Garcia, E.A. Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [Google Scholar]
References | Data | Time Period | Source of News | Hybrid Model | Model’s Output |
---|---|---|---|---|---|
Jing et al. [29] | Shanghai Stock Exchange | 1 January 2017 to 31 July 2019 | stock forum | Sentiment Analysis + CNN + LSTM | Predicting stock’s closing price |
Huang et al. [30] | Taiwan Semiconductor Manufacturing Company | 1 January 2019 to 29 April 2021 | social media | Sentiment Analysis + Genetic Algorithm + LSTM | Two classes (Up, Down) |
John and Latha [31] | NASDAQ | March 2013 to November 2019 | financial news | Sentiment Analysis + Bi-LSTM + LSTM + GRU | Predicting stock’s closing price |
Bogle and Potter [32] | Jamaica Stock Exchange | January and February 2015 | social media—Twitter | Sentiment Analysis + decision trees or ANN or SVM | Movement prediction of the JSE index |
Ko and Chang [33] | Taiwan Stock Exchange | 1 January 2015 to 31 March 2020 | news, online forum posts | Sentiment Analysis (BERT) + LSTM | Predicting stock’s opening price |
Jin [34] | Shanghai Stock Exchange | 1 August 2022 to 1 August 2023 | sentiment in banking sector | Sentiment Analysis + LSTM | Two classes (Up, Down) |
Sreyash et al. [35] | New York Stock Exchange (NYSE) | from 2010 to 2020 | social media—Twitter | Sentiment Analysis + LSTM | Predicting normalised stock’s prices |
Ouf et al. [36] | S&P 500 | June 2015 to September 2020 | social media—Twitter | Sentiment Analysis + LSTM | Two classes (Up, Down) |
Stages | Text Pre-Processing |
---|---|
1. | Convert to lowercase |
2. | Removing punctuation marks |
3. | Tokenization: split the text into individual words |
4. | Removing stop words |
5. | Stemming: reduce words to their base |
6. | Removing numbers |
7. | Remove html tags |
RNAs | Total | Voting | Rights | Q4 | Production | Report | Changes | Leadership |
---|---|---|---|---|---|---|---|---|
total voting rights report | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 |
q4 production report | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
leadership changes | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Stages | A Predictive Model for Sentiment Analysis |
---|---|
1. | Train-Test Split: divide the dataset into training and testing sets |
2. | Model Selection: use a classification algorithm such as Naive Bayes, Logistic Regression, or SVM |
3. | Model Training |
4. | Model Evaluation using performance metrics |
5. | Make predictions using the trained model to classify new, unseen text |
Analytical Overview of the Dataset | |
---|---|
1. | Historical stock prices and RNAs for AstraZeneca and Rio Tinto, which are traded on the FTSE 100 |
2. | Time Period: 2 January 2019–28 May 2021 |
3. | During the selected period, there were 609 trading days |
4. | During the selected period there were 290 Regulatory News Announcements (RNAs) for AstraZeneca, distributed over 212 trading days. |
5. | During the selected period there were 575 Regulatory News Announcements (RNAs) for Rio Tinto, distributed over 325 trading days. |
6. | On some trading days there are multiple RNAs, while on others, there are none. |
7. | We randomly split the data into training (70%) and testing (30%) and report the metrics per iteration |
LSTM Network Iteration | Accuracy | Precision (Up) | Recall (Up) | F1-Score (Up) |
---|---|---|---|---|
1 | 0.56 | 0.57 | 0.27 | 0.31 |
2 | 0.54 | 0.51 | 0.25 | 0.34 |
3 | 0.55 | 0.56 | 0.18 | 0.27 |
4 | 0.53 | 0.50 | 0.18 | 0.26 |
5 | 0.56 | 0.57 | 0.27 | 0.31 |
Mean ± sd | 0.55 ± 0.01 | 0.54 ± 0.03 | 0.23 ± 0.04 | 0.30 ± 0.03 |
Logistic Regr. Iteration | Accuracy | Precision (Up) | Recall (Up) | F1-Score (Up) |
1 | 0.53 | 0.55 | 0.60 | 0.57 |
2 | 0.54 | 0.54 | 0.71 | 0.62 |
3 | 0.52 | 0.56 | 0.58 | 0.57 |
4 | 0.50 | 0.59 | 0.40 | 0.47 |
5 | 0.49 | 0.52 | 0.48 | 0.50 |
Mean ± sd | 0.52 ± 0.01 | 0.55 ± 0.02 | 0.55 ± 0.10 | 0.54 ± 0.05 |
SVM Iteration | Accuracy | Precision (Up) | Recall (Up) | F1-Score (Up) |
1 | 0.52 | 0.54 | 0.67 | 0.60 |
2 | 0.52 | 0.53 | 0.51 | 0.52 |
3 | 0.52 | 0.61 | 0.36 | 0.45 |
4 | 0.50 | 0.53 | 0.72 | 0.61 |
5 | 0.49 | 0.49 | 0.99 | 0.66 |
Mean ± sd | 0.51 ± 0.01 | 0.54 ± 0.03 | 0.65 ± 0.21 | 0.57 ± 0.07 |
Simple RNN Iteration | Accuracy | Precision (Up) | Recall (Up) | F1-Score (Up) |
1 | 0.52 | 0.50 | 0.64 | 0.56 |
2 | 0.51 | 0.47 | 0.42 | 0.44 |
3 | 0.51 | 0.48 | 0.76 | 0.59 |
4 | 0.48 | 0.46 | 0.52 | 0.49 |
5 | 0.51 | 0.48 | 0.41 | 0.44 |
Mean ± sd | 0.51 ± 0.01 | 0.48 ± 0.01 | 0.55 ± 0.13 | 0.50 ± 0.06 |
Hybrid System Iteration | Accuracy | Precision (Up) | Recall (Up) | F1-Score (Up) |
---|---|---|---|---|
1 | 0.65 | 0.75 | 0.30 | 0.43 |
2 | 0.61 | 0.60 | 0.30 | 0.40 |
3 | 0.65 | 0.67 | 0.40 | 0.50 |
4 | 0.65 | 0.75 | 0.30 | 0.43 |
5 | 0.61 | 0.67 | 0.20 | 0.31 |
Mean ± sd | 0.63 ± 0.02 | 0.69 ± 0.05 | 0.30 ± 0.06 | 0.41 ± 0.06 |
LSTM Network Iteration | Accuracy | Precision (Up) | Recall (Up) | F1-Score (Up) |
---|---|---|---|---|
1 | 0.52 | 0.57 | 0.75 | 0.65 |
2 | 0.56 | 0.61 | 0.81 | 0.70 |
3 | 0.53 | 0.56 | 0.79 | 0.66 |
4 | 0.53 | 0.50 | 0.18 | 0.26 |
5 | 0.55 | 0.54 | 0.93 | 0.68 |
Mean ± sd | 0.54 ± 0.01 | 0.56 ± 0.03 | 0.69 ± 0.26 | 0.59 ± 0.16 |
Logistic Regr. Iteration | Accuracy | Precision (Up) | Recall (Up) | F1-score (Up) |
1 | 0.53 | 0.54 | 0.91 | 0.67 |
2 | 0.52 | 0.54 | 0.82 | 0.65 |
3 | 0.51 | 0.53 | 0.56 | 0.65 |
4 | 0.50 | 0.54 | 0.75 | 0.62 |
5 | 0.49 | 0.49 | 0.76 | 0.59 |
Mean ± sd | 0.51 ± 0.01 | 0.53 ± 0.02 | 0.76 ± 0.11 | 0.64 ± 0.03 |
SVM Iteration | Accuracy | Precision (Up) | Recall (Up) | F1-score (Up) |
1 | 0.48 | 0.48 | 1.00 | 0.65 |
2 | 0.54 | 0.54 | 0.84 | 0.66 |
3 | 0.48 | 0.48 | 1.00 | 0.64 |
4 | 0.49 | 0.51 | 0.82 | 0.63 |
5 | 0.52 | 0.52 | 0.91 | 0.66 |
Mean ± sd | 0.50 ± 0.02 | 0.51 ± 0.02 | 0.91 ± 0.07 | 0.65 ± 0.01 |
Simple RNN Iteration | Accuracy | Precision (Up) | Recall (Up) | F1-score (Up) |
1 | 0.48 | 0.48 | 0.95 | 0.64 |
2 | 0.52 | 0.51 | 0.84 | 0.63 |
3 | 0.49 | 0.49 | 0.99 | 0.65 |
4 | 0.51 | 0.50 | 0.52 | 0.51 |
5 | 0.49 | 0.48 | 0.56 | 0.52 |
Mean ± sd | 0.50 ± 0.01 | 0.49 ± 0.01 | 0.77 ± 0.19 | 0.59 ± 0.06 |
Hybrid Model Iteration | Accuracy | Precision (Up) | Recall (Up) | F1-Score (Up) |
---|---|---|---|---|
1 | 0.62 | 0.50 | 0.72 | 0.59 |
2 | 0.64 | 0.52 | 0.78 | 0.62 |
3 | 0.60 | 0.50 | 0.74 | 0.60 |
4 | 0.62 | 0.52 | 0.74 | 0.61 |
5 | 0.64 | 0.54 | 0.74 | 0.62 |
Mean ± sd | 0.62 ± 0.01 | 0.52 ± 0.01 | 0.74 ± 0.02 | 0.61 ± 0.01 |
Sentiment Analyser | Accuracy | Precision (Up) | Recall (Up) | F1-Score (Up) |
---|---|---|---|---|
BoW + Naïve Bayes | 0.55 ± 0.02 | 0.56 ± 0.02 | 0.54 ± 0.02 | 0.55 ± 0.02 |
DeBERTa v3 | 0.53 ± 0.02 | 0.57 ± 0.02 | 0.47 ± 0.02 | 0.50 ± 0.02 |
Weighted Fusion Ensemble | 0.54 ± 0.02 | 0.55 ± 0.02 | 0.51 ± 0.02 | 0.53 ± 0.02 |
DistilBERT | 0.50 ± 0.02 | 0.50 ± 0.02 | 0.83 ± 0.02 | 0.62 ± 0.02 |
Sentiment Analyser | Accuracy | Precision (Up) | Recall (Up) | F1-Score (Up) |
---|---|---|---|---|
BoW + Naïve Bayes | 0.57 ± 0.02 | 0.59 ± 0.02 | 0.56 ± 0.02 | 0.57 ± 0.02 |
DeBERTa v3 | 0.54 ± 0.02 | 0.59 ± 0.02 | 0.48 ± 0.02 | 0.54 ± 0.02 |
Weighted Fusion Ensemble | 0.55 ± 0.02 | 0.57 ± 0.02 | 0.76 ± 0.02 | 0.64 ± 0.02 |
DistilBERT | 0.54 ± 0.02 | 0.57 ± 0.02 | 0.53 ± 0.02 | 0.54 ± 0.02 |
Sentiment Analyser | Accuracy | Precision (Up) | Recall (Up) | F1-Score (Up) |
---|---|---|---|---|
DistilBERT | 0.50 ± 0.02 | 0.59 ± 0.02 | 0.84 ± 0.02 | 0.70 ± 0.02 |
Sentiment Analyser | Accuracy | Precision (Up) | Recall (Up) | F1-Score (Up) |
---|---|---|---|---|
Weighted Fusion Ensemble | 0.54 ± 0.02 | 0.64 ± 0.02 | 0.79 ± 0.02 | 0.72 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liagkouras, K.; Metaxiotis, K. A Hybrid Long Short-Term Memory with a Sentiment Analysis System for Stock Market Forecasting. Electronics 2025, 14, 2753. https://doi.org/10.3390/electronics14142753
Liagkouras K, Metaxiotis K. A Hybrid Long Short-Term Memory with a Sentiment Analysis System for Stock Market Forecasting. Electronics. 2025; 14(14):2753. https://doi.org/10.3390/electronics14142753
Chicago/Turabian StyleLiagkouras, Konstantinos, and Konstantinos Metaxiotis. 2025. "A Hybrid Long Short-Term Memory with a Sentiment Analysis System for Stock Market Forecasting" Electronics 14, no. 14: 2753. https://doi.org/10.3390/electronics14142753
APA StyleLiagkouras, K., & Metaxiotis, K. (2025). A Hybrid Long Short-Term Memory with a Sentiment Analysis System for Stock Market Forecasting. Electronics, 14(14), 2753. https://doi.org/10.3390/electronics14142753