Optimization of Thermal Stress in High-Power Semiconductor Laser Array Packaging
Abstract
1. Introduction
2. Numerical Models and Theoretical Analysis
2.1. Physical Geometric Model
2.2. Mesh Independence Verification
2.3. Mathematical Analysis of Heat Generation and Thermal Stress in Semiconductor Lasers
2.3.1. Heat Generation Mechanism in Semiconductor Lasers
- (1)
- During the normal operation of semiconductor lasers, the injected current causes electrons and holes to recombine in the active region, producing laser emission. This process generates substantial heat due to absorption associated with spontaneous radiation, stimulated radiation, and non-radiative processes. The Joule heating produced in the active region can be expressed as follows [18]:
- (2)
- The Joule heat generated in the non-active region semiconductor materials and Ohmic contact resistance can be expressed as follows [18]:
2.3.2. Theoretical Analysis of Thermal Stress in Semiconductor Lasers
2.3.3. Thermal Resistance in Semiconductor Lasers
3. Simulation Results and Analysis
3.1. Effect of Symmetric Microchannel Heatsink Packaging on Thermal Stress in Semiconductor Laser Arrays
3.2. Multi-Objective Optimization of Microchannel Heat Sinks
3.2.1. Design Variables and Objective Functions
3.2.2. Response Surface Regression Models
3.2.3. Response Surface Analysis
3.2.4. Genetic Algorithm Optimization
3.2.5. Simulation Validation
4. Conclusions
- (1)
- Symmetric microchannel packaging significantly enhances the thermal management capacity of semiconductor laser arrays. Transitioning from asymmetric to symmetric microchannel heatsink packaging reduces the peak laser temperature by 12.59 °C, decreases the thermal resistance by 55% (from 1.05 °C/W to 0.47 °C/W), lowers the maximum thermal stress by 18.79 MPa, and reduces the maximum vertical displacement of laser bars by 0.55 μm. Concurrently, the maximum temperature differential between chips decreases by 12.34 °C, demonstrating substantially improved cooling uniformity through symmetric microchannel packaging.
- (2)
- Optimization of circular micro-pin fin structures within the microchannel heatsink was conducted using RSM to establish polynomial regression models between the pin-fin radius (R), height (H), and spacing (B), and the laser array’s maximum temperature, peak thermal stress, and maximum chip displacement. Model goodness-of-fit and reliability were rigorously validated. Genetic Algorithm multi-objective optimization determined the optimal parameter combination as R = 0.1 mm, H = 0.3 mm, and B = 0.1 mm. The predicted results closely align with simulation data, with a maximum error of merely 3.7%.
- (3)
- After optimization, the microchannel heatsink demonstrates significantly enhanced thermal performance, maintaining the semiconductor laser array at an operating temperature of 39.91 °C within the optimal working range. Compared to conventional packaging configurations, the optimized design achieves a 16.56 °C reduction in the peak temperature, a 24.01 MPa decrease in the maximum thermal stress, and a 0.77 μm reduction in the maximum vertical chip displacement, representing a breakthrough advancement in thermal management capabilities.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CTE | Coefficient of Thermal Expansion |
BBD | Box–Behnken Design |
GA | Genetic Algorithm |
RSM | Response Surface Methodology |
MCC | Micro-Channel Cooling |
References
- Liu, J.; Wang, M.; Wang, Y.; Zhou, X.; Fu, T.; Qi, A.; Qu, H.; Xing, X.; Zheng, W. High maximum power density and low mechanical stress photonic-band-crystal diode laser array based on non-soldered packaging technology. Chin. Opt. Lett. 2022, 20, 071403. [Google Scholar] [CrossRef]
- Cheng, L.; Sun, H.; Dai, X.; Wei, B. Optimization of Heat-Dissipation Structure of High-Power Diode Laser in Space Environments. Micromachines 2024, 15, 968. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, J.W.; Hou, D.; Wang, Z.F.; Xiong, L.L.; Liu, H.; Nie, Z.Q.; Liu, X.S.; Zhang, P.; Wang, J.; et al. A 3000W 808 Nm QCW G—Stack Semiconductor Laser Array. In Proceedings of the XX International Symposium on High Power Laser Systems and Applications; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; p. 92550W–1-7. [Google Scholar]
- Wu, S.; Li, T.; Wang, Z.; Chen, L.; Zhang, J.; Zhang, J.; Liu, J.; Zhang, Y.; Deng, L. Study of Temperature Effects on the Design of Active Region for 808 nm High-Power Semiconductor Laser. Crystals 2023, 13, 85. [Google Scholar] [CrossRef]
- Hasler, K.; Frevert, C.; Crump, P.; Erbert, G.; Wenzel, H. Numerical study of high-power semiconductor lasers for operation at subzero temperatures. Semicond. Sci. Technol. 2017, 32, 045004. [Google Scholar] [CrossRef]
- Wang, M.P.; Zhang, P.; Nie, Z.Q.; Liu, H.; Sun, Y.B.; Wu, D.H.; Zhao, Y.L. Analysis of Cryogenic Characteristics of High Power Semiconductor Lasers. Acta Phtonica Sin. 2019, 48, 0914002. [Google Scholar] [CrossRef]
- Nie, Z.; Lu, Y.; Chen, T.; Zhang, P.; Wu, D.; Wang, M.; Xiong, L.; Li, X.; Wang, Z.; Liu, X. Thermomechanical Behavior of Conduction-Cooled High-Power Diode Laser Arrays. IEEE Trans. Compon. Pack. Manuf. Technol. 2018, 8, 818–829. [Google Scholar] [CrossRef]
- Lin, C.; Lin, J.; Tai, P.; Wang, T.; Feng, B.; Chou, C.; Han, P. Design and Experimental Study of Wavelength Beam Combining System Using Full-Bar Diode Laser Stacks. IEEE Photonics Technol. Lett. 2024, 36, 535–538. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, Y.; Peng, S.; Liu, Y. The SMILE Effect in the Beam Propagation Direction Affects the Beam Shaping of a Semiconductor Laser Bar Array. Photonics 2024, 11, 161. [Google Scholar] [CrossRef]
- Zhang, Q.; Feng, P.; Yang, C.; Zhuang, Y.; Cai, W.; Wu, Z. Spectral analysis of beam-combining-systems based on laser array with smile effect. Opt. Commun. 2024, 550, 130018. [Google Scholar] [CrossRef]
- Chaparala, S.C.; Hughes, L.C.; Kwak, J. Thermo-Mechanical Analysis of a Laser Diode Chip in an Opto-Electronic Package. In Proceedings of the ASME 2009 InterPACK Conference, San Francisco, CA, USA, 19–23 July 2009. IPACK2009-89108. [Google Scholar]
- Kozlowska, A.; Lapka, P.; Seredynski, M.; Teodorczyk, M.; Dabrowska-Tumanska, E. Experimental study and numerical modeling of micro-channel cooler with micro-pipes for high-power diode laser arrays. Appl. Therm. Eng. 2015, 91, 279–287. [Google Scholar] [CrossRef]
- Wu, Z.; You, S.; Du, Q.; Huang, Y. Influence of smile effect on beam properties of spectrally combined beams based on diode laser stacks. Opt. Commun. 2020, 471, 126031. [Google Scholar] [CrossRef]
- Gordeev, V.; Oleshchenko, V.; Bezotosnyi, V. Thermoelastic stresses in high-power CW diode laser arrays assembled on CuW and AlN submounts. Quantum Electron. 2022, 52, 443. [Google Scholar] [CrossRef]
- Qu, W.; Mudawar, I. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int. J. Heat Mass Transf. 2002, 45, 2549–2565. [Google Scholar] [CrossRef]
- Jing, H.; Zhong, L.; Ni, Y.; Zhang, J.; Liu, S.; Ma, X. Design and simulation of a novel high-efficiency cooling heat-sink structure using fluid-thermodynamics. J. Semicond. 2015, 36, 37–42. [Google Scholar] [CrossRef]
- Rapp, S.; Piprek, J.; Streubel, K.; Andre, J.; Wallin, J. Temperature sensitivity of 1.54-mu m vertical-cavity lasers with an InP-based Bragg reflector. IEEE J. Quantum Electron. 1997, 33, 1839–1845. [Google Scholar] [CrossRef]
- Camps, I.; Gonzalez, J.; Sanchez, M. Calculation of the thermal resistance and temperature distribution in blue-green semiconductor lasers. Semicond. Sci. Technol. 1997, 12, 1574–1578. [Google Scholar] [CrossRef]
- Choi, J.H.; Shin, M.W. Thermal Analysis of the Open Type of Laser Diode. In Proceedings of the IEEE International Workshop on Thermal Investigations of ICs & Systems, Paris, France, 27–29 September 2011; pp. 1–5. [Google Scholar]
- Tang, Z.; Sun, R.; Lu, K.; Cheng, J.; Zhou, P. Multi-objective optimization of flow boiling heat transfer in a manifold microchannel heat sink with curved corners. Int. J. Heat Mass Transf. 2025, 247, 127182. [Google Scholar] [CrossRef]
- Shao, X.; Marzban, A.; Pourfattah, F.; Akbari, O.; Ahmadi, G.; Emami, N.; Salahshour, S. Optimization of the flow guiding fins configuration and tube arrangements in a shell and tube heat exchanger: Coupling response surface methodology and CFD. Case Stud. Therm. Eng. 2025, 72, 106279. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, J.; Gong, B.; Yu, S.; Qiao, Z.; Liu, Q.; Su, Z.; Sun, J.; Wang, X.; Sun, H. Performance enhancement of cyclone deoiling for oily sludge based on BP neural network model and genetic algorithm. Powder Technol. 2025, 460, 121029. [Google Scholar] [CrossRef]
Material | Density (Kg/m3) | Young’s Modulus (109 Pa) | Thermal Expansion Coefficient (10−6 1/k) | Poisson Ratio | Thermal Conductivity (W/(M·K)) | Specific Heat Capacity (J/(kg·K)) |
---|---|---|---|---|---|---|
Cu | 8930 | 115 | 16.5 | 0.36 | 398 | 384.56 |
GaAs | 5310 | 86 | 6.4 | 0.3 | 44 | 320 |
In | 7290 | 11 | 31 | 0.45 | 82 | 233 |
SiO2 | 2200 | 70 | 0.5 | 0.17 | 1.4 | 730 |
Au | 19,280 | 74 | 14.2 | 0.42 | 315 | 128.7 |
Polyimide | 1300 | 3.1 | 25 | 0.34 | 0.15 | 1100 |
Mesh Count | Maximum Temperature (°C) | Maximum Thermal Stress (MPa) | Maximum Chip Displacement (μm) | Maximum Temperature Error (%) | Maximum Thermal Stress Error (%) | Maximum Chip Displacement Error (%) |
---|---|---|---|---|---|---|
1,848,542 | 57.2 | 38.853 | 1.5791 | 0.74 | 10.60 | 5.77 |
2,836,392 | 56.96 | 38.368 | 1.5797 | 0.32 | 11.72 | 5.73 |
3,735,429 | 55.79 | 37.209 | 1.5256 | 1.74 | 14.39 | 8.96 |
5,097,286 | 56.47 | 44.136 | 1.6651 | 0.55 | 1.55 | 0.64 |
5,755,291 | 56.78 | 43.462 | 1.6758 | Benchmark | Benchmark | Benchmark |
Factor | −1 | 0 | 1 |
---|---|---|---|
R (mm) | 0.1 | 0.2 | 0.3 |
H (mm) | 0.1 | 0.2 | 0.3 |
B (mm) | 0.1 | 0.3 | 0.5 |
Run | R/mm | H/mm | B/mm | Y1/°C | Y2/MPa | Y3/μm |
---|---|---|---|---|---|---|
1 | 0.1 | 0.1 | 0.3 | 42.64 | 23.362 | 1.0541 |
2 | 0.3 | 0.1 | 0.3 | 43.43 | 23.62 | 1.1016 |
3 | 0.1 | 0.3 | 0.3 | 40.94 | 21.28 | 0.95176 |
4 | 0.3 | 0.3 | 0.3 | 43.65 | 25.43 | 1.1303 |
5 | 0.1 | 0.2 | 0.1 | 40.47 | 20.012 | 0.93028 |
6 | 0.3 | 0.2 | 0.1 | 42.59 | 22.761 | 1.0499 |
7 | 0.1 | 0.2 | 0.5 | 41.82 | 22.067 | 1.0094 |
8 | 0.3 | 0.2 | 0.5 | 43.23 | 23.933 | 1.0851 |
9 | 0.2 | 0.1 | 0.1 | 43.69 | 24.18 | 1.1223 |
10 | 0.2 | 0.3 | 0.1 | 42.06 | 22.812 | 1.0501 |
11 | 0.2 | 0.1 | 0.5 | 44.07 | 25.283 | 1.1408 |
12 | 0.2 | 0.3 | 0.5 | 43.39 | 24.766 | 1.1078 |
13 | 0.2 | 0.2 | 0.3 | 43.31 | 24 | 1.0951 |
14 | 0.2 | 0.2 | 0.3 | 43.29 | 24.067 | 1.0951 |
15 | 0.2 | 0.2 | 0.3 | 43.19 | 23.74 | 1.0834 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, L.; Wei, B.; Dai, X.; Bao, Y.; Sun, H. Optimization of Thermal Stress in High-Power Semiconductor Laser Array Packaging. Electronics 2025, 14, 3336. https://doi.org/10.3390/electronics14163336
Cheng L, Wei B, Dai X, Bao Y, Sun H. Optimization of Thermal Stress in High-Power Semiconductor Laser Array Packaging. Electronics. 2025; 14(16):3336. https://doi.org/10.3390/electronics14163336
Chicago/Turabian StyleCheng, Lei, Bingxing Wei, Xuanjun Dai, Yanan Bao, and Huaqing Sun. 2025. "Optimization of Thermal Stress in High-Power Semiconductor Laser Array Packaging" Electronics 14, no. 16: 3336. https://doi.org/10.3390/electronics14163336
APA StyleCheng, L., Wei, B., Dai, X., Bao, Y., & Sun, H. (2025). Optimization of Thermal Stress in High-Power Semiconductor Laser Array Packaging. Electronics, 14(16), 3336. https://doi.org/10.3390/electronics14163336