Efficient Embedded System for Drowsiness Detection Based on EEG Signals: Features Extraction and Hardware Acceleration
Abstract
:1. Introduction
2. Related Works
3. Methodology
3.1. EEG Data
3.2. Preprocessing and Feature Extraction
3.2.1. Preprocessing
3.2.2. Feature Extraction
3.3. Classification
- NBThe Naive Bayes classifier is a probabilistic machine learning algorithm based on Bayes’ theorem, assuming independence among features [52]. Despite this simplification, it performs well in various classification tasks by calculating the probability of a data point belonging to a particular class.Bayes’ theorem is expressed as follows (7):In practice, is calculated as the product of the probabilities of individual features, assuming independence (8):The Naive Bayes classifier assigns the class with the highest posterior probability, making it computationally efficient and effective for tasks such as text classification and spam filtering.
- k-NNThe k-NN algorithm is a simple yet effective supervised machine learning method used for classification tasks [53]. It assigns a class to a given data point based on the majority class of its k nearest neighbors in the feature space. The algorithm involves calculating the distance between the query point and all training samples, identifying the k closest points, and performing majority voting among their classes.The distance is often computed using the Euclidean distance Formula (9):By selecting the majority class among the k nearest neighbors, the k-NN algorithm effectively classifies the query point. Its performance depends on the choice of k and the distance metric used.
- DTA DT is a machine learning algorithm that makes decisions by recursively splitting data based on feature values. At each node, the algorithm chooses the best feature to split the data, using criteria like the Gini Impurity [54]. The Gini Impurity is defined as follows (10):The feature that minimizes the Gini Impurity is selected for splitting. In drowsiness detection, Decision Trees classify subjects as alert or drowsy based on physiological signal features like EEG. The simplicity and interpretability of DT make them suitable for real-time applications, although they may suffer from overfitting in complex datasets.
- RFRF is an ensemble learning method that enhances classification accuracy and robustness by combining multiple decision trees. Each tree in the forest is trained on a random subset of the data, and the final prediction is made by aggregating the outputs of all trees, typically using majority voting for classification tasks [55]. This approach reduces overfitting and improves generalization. In a classification task, the prediction is determined by the majority vote from all trees in the forest (11):
- MLPA Multilayer Perceptron is a type of Artificial Neural Network widely used for classification tasks. It consists of multiple layers of neurons: an input layer, one or more hidden layers, and an output layer [56]. Each neuron in one layer is fully connected to the neurons in the next layer through weighted connections. MLP is particularly powerful in modeling complex, non-linear relationships in data. During training, the network adjusts the weights of these connections using the backpropagation algorithm, aiming to minimize the error between predicted and actual outputs. The output is determined by the following Equation (12):
- SVMSupport Vector Machines are supervised learning models that aim to find an optimal hyperplane that separates data points into distinct classes. In cases where the data are not linearly separable, the Radial Basis Function (RBF) kernel maps the feature space into a higher-dimensional space, making separation feasible. The RBF kernel is defined by Equation (13):
3.4. Performance Evaluation
4. Implementation on PYNQ-Z2
4.1. Overview of the PYNQ-Z2 Platform
- AXI4: Used for high-bandwidth data transfers, ideal for applications needing frequent memory access.
- AXI4-Lite: Suited for low-complexity data transfers, particularly for control signals.
- AXI4-Stream: Optimized for continuous data streaming, essential for real-time signal processing, such as EEG signal acquisition and feature extraction.
4.2. Implementation Details
4.2.1. Discrete Wavelet IP Core
4.2.2. Features Extraction IP Core
4.2.3. Interconnection Architectures for DWT and Feature Extraction
5. Results and Discussion
5.1. Drowsiness Detection Precision
5.2. Power Consumption
5.3. Processing Time
5.4. Hardware Resources
5.5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- van Schie, M.K.; Lammers, G.J.; Fronczek, R.; Middelkoop, H.A.; van Dijk, J.G. Vigilance: Discussion of related concepts and proposal for a definition. Sleep Med. 2021, 83, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Jing, M.J.; Li, H.; Li, C.P.; Wei, X.J.; Lin, W.Q.; Zhu, S.C.; Xu, Y.L.; Li, L.M. The Association between Working Hours with Vigilance and Executive Function of Intensive Care Unit Nurses. J. Nurs. Manag. 2023, 2023, 3770404. [Google Scholar] [CrossRef]
- Wang, H.; Chen, D.; Huang, Y.; Zhang, Y.; Qiao, Y.; Xiao, J.; Xie, N.; Fan, H. Assessment of vigilance level during work: Fitting a hidden Markov model to heart rate variability. Brain Sci. 2023, 13, 638. [Google Scholar] [CrossRef] [PubMed]
- Slater, J.D. A definition of drowsiness: One purpose for sleep? Med. Hypotheses 2008, 71, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Albadawi, Y.; Takruri, M.; Awad, M. A review of recent developments in driver drowsiness detection systems. Sensors 2022, 22, 2069. [Google Scholar] [CrossRef]
- Li, G.; Chung, W.Y. Electroencephalogram-based approaches for driver drowsiness detection and management: A review. Sensors 2022, 22, 1100. [Google Scholar] [CrossRef]
- Das, A.K.; Kumar, P.; Halder, S.; Metia, S. A Statistical Approach for Investigation and Comparison of Fatigue and Drowsiness based on Complexity Parameters of EOGs. Int. J. Image, Graph. Signal Process. 2023, 15, 39–59. [Google Scholar]
- Halomoan, J.; Ramli, K.; Sudiana, D.; Gunawan, T.S.; Salman, M. A New ECG Data Processing Approach to Developing an Accurate Driving Fatigue Detection Framework with Heart Rate Variability Analysis and Ensemble Learning. Information 2023, 14, 210. [Google Scholar] [CrossRef]
- Ma, M.; Luo, X.; Xiahou, S.; Shan, X. A Laguerre–Volterra network model based on ant colony optimization applied to evaluate EMG-force relationship in the muscle fatigue state. Rev. Sci. Instruments 2024, 95, 065004. [Google Scholar] [CrossRef]
- Adams, E.J.; Scott, M.E.; Amarante, M.; Ramírez, C.A.; Rowley, S.J.; Noble, K.G.; Troller-Renfree, S.V. Fostering inclusion in EEG measures of pediatric brain activity. npj Sci. Learn. 2024, 9, 27. [Google Scholar] [CrossRef]
- Latreche, I.; Slatnia, S.; Kazar, O.; Barka, E.; Harous, S. A Review on Deep Learning Techniques for EEG-Based Driver Drowsiness detection systems. Informatica 2024, 48, 3. [Google Scholar] [CrossRef]
- Mohammedi, M.; Mokrani, J.; Mouhoubi, A. An automated and highly efficient driver drowsiness detection and alert system using electroencephalography signals for safe driving. Multimed. Tools Appl. 2024, 83, 87299–87322. [Google Scholar] [CrossRef]
- Minhas, R.; Peker, N.Y.; Hakkoz, M.A.; Arbatli, S.; Celik, Y.; Erdem, C.E.; Semiz, B.; Peker, Y. Association of visual-based signals with electroencephalography patterns in enhancing the drowsiness detection in drivers with obstructive sleep apnea. Sensors 2024, 24, 2625. [Google Scholar] [CrossRef] [PubMed]
- Bajaj, J.S.; Kumar, N.; Kaushal, R.K.; Gururaj, H.; Flammini, F.; Natarajan, R. System and method for driver drowsiness detection using behavioral and sensor-based physiological measures. Sensors 2023, 23, 1292. [Google Scholar] [CrossRef] [PubMed]
- Siddhad, G.; Dey, S.; Roy, P.P. DrowzEE-G-Mamba: Leveraging EEG and State Space Models for Driver Drowsiness Detection. arXiv 2024, arXiv:2408.16145. [Google Scholar]
- Zayed, A.; Belhadj, N.; Khalifa, K.B.; Bedoui, M.H. VVC intra prediction decoder: Feature improvement and performance analysis. In Proceedings of the 2022 IEEE International Conference on Design & Test of Integrated Micro & Nano-Systems (DTS), Cairo, Egypt, 6–9 June 2022; pp. 1–4. [Google Scholar]
- Xie, Y.; Majoros, T.; Oniga, S. FPGA-Based Hardware Accelerator on Portable Equipment for EEG Signal Patterns Recognition. Electronics 2022, 11, 2410. [Google Scholar] [CrossRef]
- Chaddad, A.; Wu, Y.; Kateb, R.; Bouridane, A. Electroencephalography signal processing: A comprehensive review and analysis of methods and techniques. Sensors 2023, 23, 6434. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Y.; Banerjee, S.; Cao, Y.; Mou, J. A discrete Chialvo–Rulkov neuron network coupled with a novel memristor model: Design, Dynamical analysis, DSP implementation and its application. Chaos Solitons Fractals 2024, 179, 114466. [Google Scholar] [CrossRef]
- Sathasivam, S.; Saon, S.; Sidek, A.; Som, M.M.; Ameen, H.A. Drowsiness detection system using eye aspect ratio technique. In Proceedings of the 2020 IEEE Student Conference on Research and Development (SCOReD), Batu Pahat, Malaysia, 27–29 September 2020; pp. 448–452. [Google Scholar]
- Florez, R.; Palomino-Quispe, F.; Alvarez, A.B.; Coaquira-Castillo, R.J.; Herrera-Levano, J.C. A Real-Time Embedded System for Driver Drowsiness Detection Based on Visual Analysis of the Eyes and Mouth Using Convolutional Neural Network and Mouth Aspect Ratio. Sensors 2024, 24, 6261. [Google Scholar] [CrossRef] [PubMed]
- Abbas, Q.; Alsheddy, A. Driver fatigue detection systems using multi-sensors, smartphone, and cloud-based computing platforms: A comparative analysis. Sensors 2020, 21, 56. [Google Scholar] [CrossRef] [PubMed]
- Gangadharan, S.; Vinod, A. Drowsiness detection using portable wireless EEG. Comput. Methods Programs Biomed. 2022, 214, 106535. [Google Scholar] [CrossRef] [PubMed]
- Arif, S.; Munawar, S.; Ali, H. Driving drowsiness detection using spectral signatures of EEG-based neurophysiology. Front. Physiol. 2023, 14, 1153268. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Gu, B.; Cao, S.; Fang, D. Identifying mental fatigue of construction workers using EEG and deep learning. Autom. Constr. 2023, 151, 104887. [Google Scholar] [CrossRef]
- Ren, Z.; Li, R.; Chen, B.; Zhang, H.; Ma, Y.; Wang, C.; Lin, Y.; Zhang, Y. EEG-based driving fatigue detection using a two-level learning hierarchy radial basis function. Front. Neurorobot. 2021, 15, 618408. [Google Scholar] [CrossRef]
- Jiang, X.; Bian, G.B.; Tian, Z. Removal of artifacts from EEG signals: A review. Sensors 2019, 19, 987. [Google Scholar] [CrossRef]
- Saleem, A.A.; Siddiqui, H.U.R.; Raza, M.A.; Rustam, F.; Dudley, S.; Ashraf, I. A systematic review of physiological signals based driver drowsiness detection systems. Cogn. Neurodyn. 2023, 17, 1229–1259. [Google Scholar] [CrossRef] [PubMed]
- Le, V.D.; Carthen, C.D.; Kamaruddin, N.; Tavakkoli, A.; Dascalu, S.M.; Harris, F.C., Jr. Generalized eeg data acquisition and processing system. In Proceedings of the International Conference on Information Technology-New Generations, Las Vegas, NV, USA, 24–26 April 2023; pp. 173–179. [Google Scholar]
- Robbins, K.A.; Touryan, J.; Mullen, T.; Kothe, C.; Bigdely-Shamlo, N. How sensitive are EEG results to preprocessing methods: A benchmarking study. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 1081–1090. [Google Scholar] [CrossRef]
- Hussein, R.M.; Miften, F.S.; George, L.E. Driver drowsiness detection methods using EEG signals: A systematic review. Comput. Methods Biomech. Biomed. Eng. 2023, 26, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Massoz, Q.; Langohr, T.; François, C.; Verly, J.G. The ULg multimodality drowsiness database (called DROZY) and examples of use. In Proceedings of the 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, 7–10 March 2016; pp. 1–7. [Google Scholar]
- Miley, A.Å.; Kecklund, G.; Åkerstedt, T. Comparing two versions of the Karolinska Sleepiness Scale (KSS). Sleep Biol. Rhythm. 2016, 14, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Ille, N.; Nakao, Y.; Yano, S.; Taura, T.; Ebert, A.; Bornfleth, H.; Asagi, S.; Kozawa, K.; Itabashi, I.; Sato, T.; et al. Ongoing EEG artifact correction using blind source separation. Clin. Neurophysiol. 2024, 158, 149–158. [Google Scholar] [CrossRef]
- Yu, J.; Li, C.; Lou, K.; Wei, C.; Liu, Q. Embedding decomposition for artifacts removal in EEG signals. J. Neural Eng. 2022, 19, 026052. [Google Scholar] [CrossRef]
- Sen, D.; Mishra, B.B.; Pattnaik, P.K. A review of the filtering techniques used in EEG signal processing. In Proceedings of the 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 11–13 April 2023; pp. 270–277. [Google Scholar]
- Stone, J.V. Independent component analysis: An introduction. Trends Cogn. Sci. 2002, 6, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Elouaham, S.; Dliou, A.; Jenkal, W.; Louzazni, M.; Zougagh, H.; Dlimi, S. Empirical Wavelet Transform Based ECG Signal Filtering Method. J. Electr. Comput. Eng. 2024, 2024, 9050909. [Google Scholar] [CrossRef]
- Pant, A.; Kumar, A. Hanning FIR window filtering analysis for EEG signals. Biomed. Anal. 2024, 1, 111–123. [Google Scholar] [CrossRef]
- Buzsaki, G. Rhythms of the Brain; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Mahabub, A. Design and implementation of cost-effective simple FIR filter for EEG signal on FPGA. World Sci. News 2019, 125, 1–17. [Google Scholar]
- De Gennaro, L.; Marzano, C.; Fratello, F.; Moroni, F.; Pellicciari, M.C.; Ferlazzo, F.; Costa, S.; Couyoumdjian, A.; Curcio, G.; Sforza, E.; et al. The electroencephalographic fingerprint of sleep is genetically determined: A twin study. Ann. Neurol. 2008, 64, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Saber, M. Removing Powerline Interference from EEG Signal using Optimized FIR Filters. J. Artif. Intell. Metaheuristics 2022, 1, 8–19. [Google Scholar] [CrossRef]
- Stancin, I.; Cifrek, M.; Jovic, A. A review of EEG signal features and their application in driver drowsiness detection systems. Sensors 2021, 21, 3786. [Google Scholar] [CrossRef]
- Zayed, A.; Khalifa, K.B.; Belhadj, N.; Bedoui, M.H.; Sakuyama, C.A.V. Discrete Wavelet Transform Coefficients for Drowsiness Detection from EEG Signals. In Proceedings of the 2023 IEEE International Conference on Design, Test and Technology of Integrated Systems (DTTIS), Gammarth, Tunisia, 1–4 November 2023; pp. 1–6. [Google Scholar]
- Zhang, C.; Eskandarian, A. A survey and tutorial of EEG-based brain monitoring for driver state analysis. arXiv 2020, arXiv:2008.11226. [Google Scholar] [CrossRef]
- Contoyiannis, Y.; Papadopoulos, P.; Potirakis, S.; Kampitakis, M.; Matiadou, N.; Kosmidis, E. Analysis of Electroencephalography (EEG) Signals Based on the Haar Wavelet Transformation. In Approximation and Computation in Science and Engineering; Springer: Cham, Switzerland, 2022; Volume 180, pp. 157–166. [Google Scholar]
- Wang, Y.; Li, Z.; Wang, C.; Feng, L.; Zhang, Z. Implementation of discrete wavelet transform. In Proceedings of the 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2014, Guilin, China, 28–31 October 2014; pp. 1–3. [Google Scholar]
- Elshekhidris, I.H.; MohamedAmien, M.B.; Fragoon, A. Wavelet transforms for EEG signal denoising and decomposition. Int. J. Adv. Signal Image Sci. 2023, 9, 11–28. [Google Scholar] [CrossRef]
- Grobbelaar, M.; Phadikar, S.; Ghaderpour, E.; Struck, A.F.; Sinha, N.; Ghosh, R.; Ahmed, M.Z.I. A survey on denoising techniques of electroencephalogram signals using wavelet transform. Signals 2022, 3, 577–586. [Google Scholar] [CrossRef]
- Fouladi, S.; Safaei, A.A.; Mammone, N.; Ghaderi, F.; Ebadi, M.J. Efficient deep neural networks for classification of Alzheimer’s disease and mild cognitive impairment from scalp EEG recordings. Cogn. Comput. 2022, 14, 1247–1268. [Google Scholar] [CrossRef]
- Peretz, O.; Koren, M.; Koren, O. Naive Bayes classifier–An ensemble procedure for recall and precision enrichment. Eng. Appl. Artif. Intell. 2024, 136, 108972. [Google Scholar] [CrossRef]
- Khodadadi, N.; Khodadadi, E.; Al-Tashi, Q.; El-Kenawy, E.S.M.; Abualigah, L.; Abdulkadir, S.J.; Alqushaibi, A.; Mirjalili, S. BAOA: Binary arithmetic optimization algorithm with K-nearest neighbor classifier for feature selection. IEEE Access 2023, 11, 94094–94115. [Google Scholar] [CrossRef]
- Charbuty, B.; Abdulazeez, A. Classification based on decision tree algorithm for machine learning. J. Appl. Sci. Technol. Trends 2021, 2, 20–28. [Google Scholar] [CrossRef]
- Palimkar, P.; Shaw, R.N.; Ghosh, A. Machine learning technique to prognosis diabetes disease: Random forest classifier approach. In Proceedings of the Advanced Computing and Intelligent Technologies: Proceedings of ICACIT 2021; Springer: Singapore, 2022; pp. 219–244. [Google Scholar]
- Li, H.; Nyirandayisabye, R.; Dong, Q.; Niyirora, R.; Hakuzweyezu, T.; Zardari, I.A.; Nkinahamira, F. Crack damage prediction of asphalt pavement based on tire noise: A comparison of machine learning algorithms. Constr. Build. Mater. 2024, 414, 134867. [Google Scholar] [CrossRef]
- Handayani, L.; Nuraeni, E.; Arsadiando, W.; Pamungkas, A. Fatigue and drowsiness detection using a support vector machine for traffic accident reduction. J. Intell. Syst. Eng. Appl. Data Sci. 2024, 1, 33–39. [Google Scholar]
- Zayed, A.; Belhadj, N.; Ben Khalifa, K.; Bedoui, M.H.; Valderrama, C. Efficient Generalized Electroencephalography-Based Drowsiness Detection Approach with Minimal Electrodes. Sensors 2024, 24, 4256. [Google Scholar] [CrossRef]
- Lázaro, J.; Astarloa, A.; Zuloaga, A.; Araujo, J.Á.; Jiménez, J. AXI Lite Redundant On-Chip Bus Interconnect for High Reliability Systems. IEEE Trans. Reliab. 2023, 73, 602–607. [Google Scholar] [CrossRef]
Study | Method | Features | Accuracy | Electrodes | Response | Advantages | Limitations |
---|---|---|---|---|---|---|---|
Maior [20] | EAR | Eye closure (EAR) | 94% | N/A | ∼1 s | Low computational needs | Sensitive to lighting |
Florez [21] | EAR + MAR (CNN) | Eye and mouth metrics | 95% | N/A | 1–2 s | Combines multiple indicators | Detects physical signs late |
Abbas [22] | Multi-sensor fusion | EEG, ECG, eye-tracking, etc. | 95%+ | 10–32 (EEG) | 1–3 s | High robustness | High energy consumption |
Gangadharan [23] | Portable EEG (SVM) | Alpha, beta, theta waves | 78.3% | 8 | N/A | Easy setup, mobility | Lower accuracy |
Arif [24] | EEG (SVM) | Spectral bands (delta–beta) | 85.6% | 19 | ∼1 s | Detects early drowsiness | High electrode count |
Wang [25] | EEG (CNN) | Statistical metrics | 85.2% | 16 | ∼5 s | Deep learning potential | Longer response time |
Ren [26] | EEG (RBF Hierarchy) | Temporal and spectral features | 92% | 32 | ∼10 s | Differentiates fatigue levels | Complex setup, many electrodes |
Vigilance State | Scale |
---|---|
Extremely alert | 0 |
Very alert | 1 |
Alert | 2 |
Rather alert | 3 |
Neither alert nor sleepy | 4 |
Some signs of sleepiness | 5 |
Sleepy, but no effort to keep awake | 6 |
Sleepy, but some effort to keep awake | 7 |
Very sleepy, great effort to keep awake, fighting sleep | 8 |
Extremely sleepy, can’t keep awake | 9 |
Wavelet | NB A(%) | KNN A(%) | DT A(%) | RF A(%) | MLP A(%) | SVM A(%) |
---|---|---|---|---|---|---|
Haar | 46.57 | 48.78 | 58.9 | 60.2 | 61.4 | 59.71 |
Symlet | 46.81 | 50.27 | 60.52 | 60.72 | 67.27 | 67.52 |
Coiflet | 40.22 | 43.5 | 47.77 | 46.89 | 50.71 | 51.2 |
Mexican Hat | 47.21 | 47.7 | 51.72 | 50.85 | 63.79 | 65.85 |
db (4) | 51.42 | 66.15 | 77.01 | 78.47 | 81.82 | 88.37 |
Architecture | A(%) | P(%) | Sen(%) | Spe(%) | F1(%) |
---|---|---|---|---|---|
PC | 88.37 | 86.43 | 88.50 | 88.75 | 87.67 |
PYNQ(ARM Cortex A-9) | 88.37 | 86.43 | 89.60 | 88.73 | 87.69 |
Float 32 | 88.37 | 86.43 | 89.25 | 88.73 | 87.69 |
Float 16 | 88.37 | 86.43 | 89.25 | 88.73 | 87.69 |
Fixed 32 (16) | 88.37 | 86.43 | 89.25 | 88.73 | 87.69 |
Fixed 24 (16) | 88.02 | 85.71 | 89.17 | 88.59 | 87.28 |
IP | Total Power (mW) |
---|---|
PC | 65,000.0 |
ARM Cortex A-9 | 626.5 |
Float 32 | 680.0 |
Float 16 | 398.0 |
Fixed 32 (16) | 657.0 |
Fixed 24 (12) | 338.0 |
LUT | LUTRAM | FF | BRAM | |
---|---|---|---|---|
Float 32 | 21,231 | 753 | 26,786 | 6 |
Float 16 | 14,511 | 588 | 18,710 | 14 |
Fixed 32 (16) | 32,152 | 2084 | 27,862 | 43 |
Fixed 24 (12) | 16,898 | 658 | 16,174 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zayed, A.; Trabes, E.; Tarrillo, J.; Ben Khalifa, K.; Valderrama, C. Efficient Embedded System for Drowsiness Detection Based on EEG Signals: Features Extraction and Hardware Acceleration. Electronics 2025, 14, 404. https://doi.org/10.3390/electronics14030404
Zayed A, Trabes E, Tarrillo J, Ben Khalifa K, Valderrama C. Efficient Embedded System for Drowsiness Detection Based on EEG Signals: Features Extraction and Hardware Acceleration. Electronics. 2025; 14(3):404. https://doi.org/10.3390/electronics14030404
Chicago/Turabian StyleZayed, Aymen, Emanuel Trabes, Jimmy Tarrillo, Khaled Ben Khalifa, and Carlos Valderrama. 2025. "Efficient Embedded System for Drowsiness Detection Based on EEG Signals: Features Extraction and Hardware Acceleration" Electronics 14, no. 3: 404. https://doi.org/10.3390/electronics14030404
APA StyleZayed, A., Trabes, E., Tarrillo, J., Ben Khalifa, K., & Valderrama, C. (2025). Efficient Embedded System for Drowsiness Detection Based on EEG Signals: Features Extraction and Hardware Acceleration. Electronics, 14(3), 404. https://doi.org/10.3390/electronics14030404