Online Pulse Compensation for Energy Spectrum Determination: A Pole-Zero Cancellation and Unfolding Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Detector Simulation
2.1.1. Data Events Generation
2.1.2. Convolutional Model
- Input Electrical Pulse
- b.
- Charge-Sensitive Preamplifier
- c.
- Pulse Shaper Circuit
- d.
- Noise Modeling
2.2. Digital Processing
2.2.1. Unfolding Algorithm
2.2.2. Pole-Zero Cancellation
2.3. Hardware Implementation
2.3.1. PZC Implementation
2.3.2. Accumulator Correction (AC)
2.3.3. Unfolding Filter
3. Results
3.1. Readout Waveform
3.2. Evaluation Metrics
3.3. Algorithm Verification in Hardware Implementation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spieler, H. Pulse processing and analysis. In Proceedings of the IEEE Nuclear Science Symposium Short Course, San Francisco, CA, USA, 10–16 November 2002; pp. 52–90. [Google Scholar]
- Conti, M.; Bendriem, B. The new opportunities for high time resolution clinical TOF PET. Clin. Transl. Imaging 2019, 7, 139–147. [Google Scholar] [CrossRef]
- Park, H.; Yi, M.; Lee, J.S. Silicon photomultiplier signal readout and multiplexing techniques for positron emission tomography: A review. Biomed. Eng. Lett. 2022, 12, 263–283. [Google Scholar] [CrossRef]
- Spieler, H. Semiconductor Detector Systems; Oxford University Press: Oxford, UK, 2005; Volume 1. [Google Scholar]
- Aimaier, N.; Sidek, R.M.; Hamidon, M.N.; Sulaiman, N. Transistor sizing methodology for low noise charge sensitive amplifier with input transistor working in moderate inversion. In Proceedings of the 2014 IEEE International Conference on Semiconductor Electronics (ICSE2014), Kuala Lumpur, Malaysia, 27–29 August 2014; pp. 189–192. [Google Scholar] [CrossRef]
- Noulis, T.; Fikos, G.; Sarrabayrouse, G.; Siskos, S. Noise Analysis of Radiation Detector Charge Sensitive Amplifier Architectures. In Proceedings of the Topical Workshop on Electronics for Particle Physics, Naxos, Greece, 15–19 September 2008. [Google Scholar]
- Gallin-Martel, L.; Pouxe, J.; Rossetto, O.; Yamouni, A. A 16 channel analog integrated circuit for PMT pulses processing. In Proceedings of the IEEE Nuclear Science Symposium, San Diego, CA, USA, 4–10 November 2001; pp. 742–745. [Google Scholar]
- Knoll, G.F. Radiation Detection and Measurement; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Beckhoff, B.; Kanngießer, B.; Langhoff, N.; Wedell, R.; Wolff, H. Handbook of Practical X-Ray Fluorescence Analysis; Springer Science & Business Media: Berlin, Germany, 2007; pp. 251–255, 260–261. [Google Scholar]
- Nakhostin, M. Recursive algorithms for real-time digital CR-RCn pulse shaping. IEEE Trans. Nucl. Sci. 2011, 58, 2378–2381. [Google Scholar] [CrossRef]
- Sosa, C.; Flaska, M.; Pozzi, S. Comparison of analog and digital pulse-shape-discrimination systems. Nuc. Instrum. Methods Phys. Res. A 2016, 826, 72–79. [Google Scholar] [CrossRef]
- Di Fulvio, A.; Shin, T.; Hamel, M.; Pozzi, S. Digital pulse processing for NaI (Tl) detectors. Nuc. Instrum. Methods Phys. Res. A 2016, 806, 169–174. [Google Scholar] [CrossRef]
- Jordanov, V.T. Deconvolution of pulses from a detector-amplifier configuration. Nuc. Instrum. Methods Phys. Res. A 1994, 351, 592–594. [Google Scholar] [CrossRef]
- Jordanov, V.T. Unfolding-synthesis technique for digital pulse processing. Part 1: Unfolding. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2016, 805, 63–71. [Google Scholar] [CrossRef]
- Zeng, G.Q.; Yang, J.; Yu, M.F.; Zhang, K.Q.; Ge, Q.; Ge, L.Q. Digital pulse deconvolution method for current tails of NaI (Tl) detectors. Chin. Phys. C 2017, 41, 016102. [Google Scholar] [CrossRef]
- Födisch, P.; Wohsmann, J.; Lange, B.; Schönherr, J.; Enghardt, W.; Kaever, P. Digital high-pass filter deconvolution by means of an infinite impulse response filter. Nuc. Instrum. Methods Phys. Res. A 2016, 830, 484–496. [Google Scholar] [CrossRef]
- Stezelberger, T.; Zimmermann, S. One and Two Poles Compensation of Charge Sensitive Amplifiers with Resistive Feedback to Improve the Energy Resolution in GRETA. IEEE Trans. Nucl. Sci. 2023, 70, 2344–2351. [Google Scholar] [CrossRef]
- Jordanov, V.T. Exponential signal synthesis in digital pulse processing. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2012, 670, 18–24. [Google Scholar] [CrossRef]
- da Fonseca Pinto, J.V.; Marin, J.L.; Freund, W.; Milan, G.G.; de Araújo, M.V.; Gonçalves, G. lorenzetti-hep/lorenzetti: 2.0.0, 2022. Available online: https://zenodo.org/records/7494463 (accessed on 30 November 2024). [CrossRef]
- IceCube Collaboration. Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science 2013, 342, 1242856. [Google Scholar] [CrossRef]
- Campana, S.; Wenaus, T. The ATLAS Computing Challenge for HL-LHC; Technical Report; CERN: Geneva, Switzerland, 2016. [Google Scholar]
- Moon, C.S. A Level-1 Pixel Based Track Trigger for the CMS HL-LHC Upgrade; Technical Report; CERN: Geneva, Switzerland, 2016. [Google Scholar]
- Benedikt, M.; Blondel, A.; Janot, P.; Mangano, M.; Zimmermann, F. Future circular colliders succeeding the LHC. Nat. Phys. 2020, 16, 402–407. [Google Scholar] [CrossRef]
- Klochkov, V.; CBM Collaboration. The compressed baryonic matter experiment at fair. Nucl. Phys. A 2021, 1005, 121945. [Google Scholar] [CrossRef]
- Smy, M.B. Hyper-Kamiokande. Phys. Sci. Forum. 2023, 8, 41. [Google Scholar]
- Wigmans, R. Calorimetry: Energy Measurement in Particle Physics; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Bierlich, C.; Chakraborty, S.; Desai, N.; Gellersen, L.; Helenius, I.; Ilten, P.; Lönnblad, L.; Mrenna, S.; Prestel, S.; Preuss, C.T.; et al. A comprehensive guide to the physics and usage of PYTHIA 8.3. Scipost Phys. Codebases 2022, 8. Available online: https://scipost.org/10.21468/SciPostPhysCodeb.8 (accessed on 30 November 2024). [CrossRef]
- Agostinelli, S.; Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce, P.; Asai, M.; Axen, D.; Banerjee, S.; Barrand, G.; et al. Geant4—A simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2003, 506, 250–303. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Araujo, H.; Arce Dubois, P.; Asai, M.; Barrand, G.; Capra, R.; Chauvie, S.; Chytracek, R.; et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006, 53, 270–278. [Google Scholar] [CrossRef]
- Araújo, M.; Begalli, M.; Freund, W.; Gonçalves, G.; Khandoga, M.; Laforge, B.; Leopold, A.; Marin, J.; Peralva, B.M.; Pinto, J.; et al. Lorenzetti Showers—A general-purpose framework for supporting signal reconstruction and triggering with calorimeters. Comput. Phys. Commun. 2023, 286, 108671. [Google Scholar] [CrossRef]
- Wright, A. The Photomultiplier Handbook; Oxford University Press: Oxford, UK, 2017; p. 553. [Google Scholar]
- Li, Y.; Chen, L.; Gao, R.; Liu, B.; Zheng, W.; Zhu, Y.; Ruan, J.; Ouyang, X.; Xu, Q. Nanosecond and highly sensitive scintillator based on all-inorganic perovskite single crystals. ACS Appl. Mater. Interfaces 2021, 14, 1489–1495. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, L.; Zhu, R.Y. Fast and Radiation Hard Inorganic Scintillators for Future HEP Experiments. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2022; Volume 2374, p. 012110. [Google Scholar]
- Sánchez, D.; Gómez, S.; Fernández-Tenllado, J.M.; Ballabriga, R.; Campbell, M.; Gascón, D. Multimodal simulation of large area silicon photomultipliers for time resolution optimization. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2021, 1001, 165247. [Google Scholar] [CrossRef]
- Garutti, E.; Klanner, R.; Rolph, J.; Schwandt, J. Simulation of the response of SiPMs; Part I: Without saturation effects. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2021, 1019, 165853. [Google Scholar] [CrossRef]
- Bolic, M.; Drndarevic, V.; Gueaieb, W. pile-up correction algorithms for very-high-count-rate gamma-ray spectrometry with NaI (Tl) detectors. IEEE Trans. Instrum. Meas. 2009, 59, 122–130. [Google Scholar] [CrossRef]
- Polushkin, V. Nuclear Electronics: Superconducting Detectors and Processing Techniques; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ching-Roa, V.D.; Olson, E.M.; Ibrahim, S.F.; Torres, R.; Giacomelli, M.G. Ultrahigh-speed point scanning two-photon microscopy using high dynamic range silicon photomultipliers. Sci. Rep. 2021, 11, 5248. [Google Scholar]
- Gatti, E.; Geraci, A.; Ripamonti, G. Optimum time-limited filters for input signals of arbitrary shape. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1997, 395, 226–230. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Q.; Zhang, Y.; Pei, J.; Huang, Y.; Yang, J. Fast split bregman based deconvolution algorithm for airborne radar imaging. Remote Sens. 2020, 12, 1747. [Google Scholar] [CrossRef]
- Grybos, P.; Maj, P.; Ramello, L.; Swientek, K. Measurements of matching and high count rate performance of multichannel ASIC for digital X-ray imaging systems. IEEE Trans. Nucl. Sci. 2007, 54, 1207–1215. [Google Scholar] [CrossRef]
- Liu, K.; Zhou, R.; Zhang, W.; Tang, Z.; Yan, J.; Lv, M.; Li, X.; Lu, Y.; Zeng, X. Interference correction for laser-induced breakdown spectroscopy using a deconvolution algorithm. J. Anal. At. Spectrom. 2020, 35, 762–766. [Google Scholar] [CrossRef]
- Lin, M.C.; Syrzycki, M. Current source transistor optimization methodology for noise optimized charge sensitive amplifier with fast shaper. In Proceedings of the 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, ON, Canada, 8–11 May 2011; pp. 000735–000738. [Google Scholar]
- Zhang, H.Q.; Qian, Y.c.; Chen, H.; Shi, H.t. Design and characterization of third-order Sallen–Key digital filter in nuclear signal processing. Appl. Radiat. Isot. 2022, 186, 110277. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Lai, W.; Jiang, Y.; Shi, J. Design of Experimental Circuit Board of Spectrometer Amplifier in Nuclear Electronics. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2023; Volume 2440, p. 012008. [Google Scholar]
- Jordanov, V.T.; Knoll, G.F.; Huber, A.C.; Pantazis, J.A. Digital techniques for real-time pulse shaping in radiation measurements. Nuc. Instrum. Methods Phys. Res. A 1994, 353, 261–264. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, M.; Wan, W.; Zhou, J.; Hong, X.; Liu, F.; Yu, J. Counting-loss correction method based on dual-exponential impulse shaping. J. Synchrotron Radiat. 2020, 27, 1609–1613. [Google Scholar] [CrossRef]
- Meyer-Baese, U.; Meyer-Baese, U. Digital Signal Processing with Field Programmable Gate Arrays; Springer: Berlin/Heidelberg, Germany, 2007; Volume 65. [Google Scholar]
- Du, Z.; Chen, X.; Zhang, H. Convolutional sparse learning for blind deconvolution and application on impulsive feature detection. IEEE Trans. Instrum. Meas. 2018, 67, 338–349. [Google Scholar] [CrossRef]
- Khilkevitch, E.; Shevelev, A.; Chugunov, I.; Iliasova, M.; Doinikov, D.; Gin, D.; Naidenov, V.; Polunovsky, I. Advanced algorithms for signal processing scintillation gamma ray detectors at high counting rates. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2020, 977, 164309. [Google Scholar] [CrossRef]
- Gonçalves, G.I.; Luciano Filho, M.d.A.; Peralva, B.S.; de Seixas, J.M.; Cerqueira, A.S. Performance of Optimal Linear Filtering Methods for Signal Estimation in High-Energy Calorimetry. J. Control Autom. Electr. Syst. 2022, 33, 1601–1611. [Google Scholar] [CrossRef]
- Quirino, T.M.; de Andrade Filho, L.M. Non-negative sparse deconvolution method for PMT signals in radiation detectors. Nucl. Instrum. Meth. A 2024, 1061, 169142. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quirino, T.M.; Paschoalin, T.C.A.; Gonçalves, G.I.; Lisboa, P.H.B.; de Andrade Filho, L.M.; Peralva, B.S.-M. Online Pulse Compensation for Energy Spectrum Determination: A Pole-Zero Cancellation and Unfolding Approach. Electronics 2025, 14, 493. https://doi.org/10.3390/electronics14030493
Quirino TM, Paschoalin TCA, Gonçalves GI, Lisboa PHB, de Andrade Filho LM, Peralva BS-M. Online Pulse Compensation for Energy Spectrum Determination: A Pole-Zero Cancellation and Unfolding Approach. Electronics. 2025; 14(3):493. https://doi.org/10.3390/electronics14030493
Chicago/Turabian StyleQuirino, Tiago Motta, Thiago Campos Acácio Paschoalin, Guilherme Inácio Gonçalves, Pedro Henrique Braga Lisboa, Luciano Manhães de Andrade Filho, and Bernardo Sotto-Maior Peralva. 2025. "Online Pulse Compensation for Energy Spectrum Determination: A Pole-Zero Cancellation and Unfolding Approach" Electronics 14, no. 3: 493. https://doi.org/10.3390/electronics14030493
APA StyleQuirino, T. M., Paschoalin, T. C. A., Gonçalves, G. I., Lisboa, P. H. B., de Andrade Filho, L. M., & Peralva, B. S.-M. (2025). Online Pulse Compensation for Energy Spectrum Determination: A Pole-Zero Cancellation and Unfolding Approach. Electronics, 14(3), 493. https://doi.org/10.3390/electronics14030493