Knowledge Graph-Based Multi-Objective Recommendation for a 6G Air Interface: A Digital Twin Empowered Approach
Abstract
:1. Introduction
- First, we analyze the challenges of existing air interface adaptation methods in scenarios such as the high-dynamic environment of 6G systems. The advantages of KGs and DTs in addressing these challenges are discussed.
- Then, we propose a KG-based multi-objective recommendation method for the 6G air interface, which is empowered by DT technology. This is achieved by simulating and predicting the variations of communication links and user behavior in the digital realm of the DT, which are used to adaptively and promptly configure the air interface. Moreover, an air interface KG is constructed based on expert knowledge, which establishes the relationship among the entities, including the channel conditions, the user demands, and the system configurations. Based on the KG, additional air interface configurations are inferred by exploiting the existing relational information stored in the KG. Then, the traditional air interface adaptation that searches over the parameter space is replaced by relational reasoning via the KG.
- Finally, we provide two use cases to validate the performance of the proposed method. First, simulation results show that the proposed method can effectively balance the joint optimization of multiple performance metrics. Second, in fast-varying dynamic environments, we show that the proposed method effectively avoids the outdated air interface configuration and significantly reduces the complexity of the multi-objective optimization problem.
2. Challenges of Traditional Methods and Opportunities of KGs and DTs
3. Multi-Objective Recommendation Design for Digital Twin of Air Interface
3.1. Digital Twin-Based Prediction Algorithm
3.2. Knowledge Graph Construction
4. Application and Performance Evaluation
4.1. Link-Level Performance Trade-Off
4.2. Network-Level Multi-User Scheduling
- , and ;
- , or .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wunder, G.; Jung, P.; Kasparick, M.; Wild, T.; Schaich, F.; Chen, Y.; BrinkStephan, T.; Gaspar, I.; Michailow, N.; Festag, A. 5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Commun. Mag. 2014, 52, 97–105. [Google Scholar] [CrossRef]
- Vision-Framework and Overal Obiectives of the Future Development of IMT for 2030 and Beyond. 2023. Available online: https://www.itu.int/md/R19-SG05-C-0131 (accessed on 2 February 2025).
- Physical Channels and Modulation, 3GPP TS 38.211 Version 16.7.0 Release 16; 3rd Generation Partnership Project (3GPP): Sophia Antipolis, France, 2023.
- Moutis, P.; Alizadeh-Mousavi, O. Digital twin of distribution power transformer for real-time monitoring of medium voltage from low voltage measurements. IEEE Trans. Power Deliv. 2016, 36, 1952–1963. [Google Scholar] [CrossRef]
- Nguyen, H.; Trestian, R.; To, D.; Tatipamula, M. Digital twin for 5G and beyond. IEEE Commun. Mag. 2021, 59, 10–15. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, H.; Duan, X.; Diego, L.; Antonio, P.; Wu, Q.; Mohamed, B.; Christian, J. Digital twin network: Concepts and reference architecture. Internet Eng. Task Force 2021. Available online: https://datatracker.ietf.org/doc/draft-irtf-nmrg-network-digital-twin-arch/ (accessed on 2 February 2025).
- Vakaruk, S.; Mozo, A.; Pastor, A.; Lopez, D. A digital twin network for security training in 5G industrial environments. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence, Beijing, China, 15 July–15 August 2021; pp. 395–398. [Google Scholar]
- Antonio, P.; Alberto, M.; Diego, L.; Jesus, F.; Angeliki, K. The mouseworld, a security traffic analysis lab based on NFV/SDN. In Proceedings of the 13th International Conference on Availability, Reliability and Security, Hamburg, Germany, 27–30 August 2018. [Google Scholar]
- Wu, Y.; Zhang, K.; Zhang, Y. Digital twin networks: A survey. IEEE Internet Things J. 2021, 8, 13789–13804. [Google Scholar] [CrossRef]
- Vanhuynh, D.; Nguyen, D.; Khosravirad, R.; Saeed, K.; Vishal, S.; Octavia, D.; Hyundong, S.; Trung, D. URLLC edge networks with joint optimal user association, task offloading and resource allocation: A digital twin approach. IEEE Trans. Commun. 2022, 70, 7669–7682. [Google Scholar] [CrossRef]
- Liu, T.; Tang, L.; Wang, W.; Chen, Q.; Zeng, X. Digital-twin-assisted task offloading based on edge collaboration in the digital twin edge network. IEEE Internet Things J. 2022, 9, 1427–1444. [Google Scholar] [CrossRef]
- Guan, K.; He, D.; Ai, B.; Chen, Y.; Han, C.; Peng, B.; Zhong, Z.; Kurner, T. Channel characterization and capacity analysis for THz communication enabled smart rail mobility. IEEE Trans. Veh. Technol. 2021, 70, 4065–4080. [Google Scholar] [CrossRef]
- Alam, M.; Reaz, M.; Ali, M. Speed: An inhabitant activity prediction algorithm for smart homes. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 2012, 42, 985–990. [Google Scholar] [CrossRef]
- Hsu, S.; Lee, Y.; Huang, J. GNN-based approach for user retweet behavior prediction. In Proceedings of the 2023 9th International Conference on Applied System Innovation, Chiba, Japan, 21–25 April 2023; pp. 178–180. [Google Scholar]
- Xiao, J.; Chen, C.; Hou, C.; Yuan, X. Short-term user activity prediction with massive mobile broadband data. In Proceedings of the 2017 18th IEEE International Conference on Mobile Data Management, Daejeon, Republic of Korea, 29 May–1 June 2017; pp. 348–351. [Google Scholar]
- Fu, Y.; Guo, D.; Li, Q.; Liu, L.; Qu, S.; Xiang, W. Digital twin based network latency prediction in vehicular networks. Electronics 2022, 11, 2217. [Google Scholar] [CrossRef]
- Jia, W.; Wang, W.; Zhang, Z. From simple digital twin to complex digital twin part I: A novel modeling method for multi-scale and multi-scenario digital twin. Adv. Eng. Inform. 2022, 53, 101706. [Google Scholar] [CrossRef]
- Raj, D.; Shaik, A.; Tammana, P.; Kataoka, K. Building a Digital twin network of SDN using knowledge graphs. IEEE Access 2023, 11, 63092–63106. [Google Scholar] [CrossRef]
- Lv, Q.; Xu, L.; Yu, J.; Wang, L.; Shi, S.; Liu, Y. Research on domain knowledge graph based on the large scale online knowledge fragment. In Proceedings of the 2014 IEEE Workshop on Advanced Research and Technology in Industry Applications, Ottawa, ON, Canada, 29–30 September 2014; pp. 312–315. [Google Scholar]
- Xie, L.; Hu, Z.; Cai, X.; Zhang, W.; Chen, J. Explainable recommendation based on knowledge graph and multi-objective optimization. Complex Intell. Syst. 2021, 7, 1241–1252. [Google Scholar] [CrossRef]
- Islam, N.; Alazab, A.; Agbinya, J. Energy Efficient and Delay Aware 5G Multi-Tier Network. Remote Sens. 2019, 11, 1019. [Google Scholar] [CrossRef]
- Lyu, T.; Zhang, M.; Cao, G. Research on energy saving technology of 5G base station. Des. Tech. Posts Telecommun. 2020, 5, 46–50. [Google Scholar]
- Clement, R.; Osvaldo, S.; Jakob, H.; Bashir, A. Calibrating Wireless Ray Tracing for Digital Twinning using Local Phase Error Estimates. IEEE Trans. Mach. Learn. Commun. Netw. 2024, 2, 1193–1215. [Google Scholar]
- Masaracchia, A.; Sharma, V.; Fahim, M.; Dobre, O.A.; Duong, T.Q. Digital Twin for Open RAN: Toward Intelligent and Resilient 6G Radio Access Networks. IEEE Commun. Mag. 2023, 61, 112–118. [Google Scholar] [CrossRef]
- Bariah, L.; Sari, H.; Debbah, M. Digital Twin-Empowered Communications: A New Frontier of Wireless Networks. IEEE Commun. Mag. 2023, 61, 24–36. [Google Scholar] [CrossRef]
- Wei, G.; Jiao, Y.; Ding, G.; Xu, Y.; Zhang, B.; Guo, D. MetaRadio: Bridging Wireless Communications Between Real and Virtual Spaces. IEEE Commun. Mag. 2023, 61, 140–146. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, X. Toward Environment-Aware 6G Communications via Channel Knowledge Map. IEEE Wirel. Commun. 2021, 28, 84–91. [Google Scholar] [CrossRef]
- Selivanov, D.; Mullen, L. Text2vec: Modern text mining framework for R. Comput. Sci. 2016, 23, 14–18. [Google Scholar]
- Ji, G.; He, S.; Xu, L.; Liu, K.; Zhao, J. Knowledge graph embedding via dynamic mapping matrix. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, Beijing, China, 26–31 July 2015; pp. 687–696. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, N.; Kaiser, L.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st Annual Conference on Neural Information Processing Systems, Red Hook, NY, USA, 4–9 December 2017; pp. 1292–1303. [Google Scholar]
- Ilya, O.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J. MLP-mixer: An all-MLP architecture for vision. Curran Assoc. 2021, 34, 24261–24272. [Google Scholar]
- Solutions for NR to Support Non-Terrestrial Networks (NTN), 3GPP TS 38.821 Version 16.2.0 Release 16; Technical Specification Group Radio Access Network: Sophia Antipolis, France, 2023.
- Vanelli-Coralli, A.; Chuberre, N.; Masini, G.; Guidotti, A.; El Jaafari, M. NR NTN Radio Interface. In 5G Non-Terrestrial Networks: Technologies, Standards, and System Design; John Wiley & Sons: Hoboken, NJ, USA, 2024; pp. 111–180. [Google Scholar]
- Song, Z.; Ni, Q.; Navaie, K.; Hou, S.; Wu, S. Energy and Spectral-Efficiency Tradeoff with α-Fairness in Downlink OFDMA Systems. IEEE Commun. Lett. 2015, 19, 1265–1268. [Google Scholar] [CrossRef]
- Jaeckel, S.; Raschkowski, L.; Borner, K.; Thiele, L.; Burkhardt, F.; Eberlein, E. Quadriga: Quasi Deterministic Radio Channel Generator, User Manual and Documentation; Fraunhofer Heinrich Hertz Institute: Berlin, Germany, 2019. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Mo, J.; Walr, J. Fair end-to-end window-based congestion control. IEEE/ACM Trans. Netw. 2000, 8, 556–567. [Google Scholar] [CrossRef]
- Kuang, Z.; Zhang, L.; Zhao, L. Energy- and Spectral-Efficiency Tradeoff with α-Fairness in Energy Harvesting D2D Communication. IEEE Trans. Veh. Technol. 2020, 69, 9972–9983. [Google Scholar] [CrossRef]
- Fei, Z.; Li, B.; Yang, S.; Xing, C.; Chen, H.; Hanzo, L. A Survey of Multi-Objective Optimization in Wireless Sensor Networks: Metrics, Algorithms, and Open Problems. IEEE Commun. Surv. Tutorials 2017, 19, 550–586. [Google Scholar] [CrossRef]
- Deb, K.; Burke, E.; Kendall, G. Multi-Objective Optimization; Springer: Boston, MA, USA, 2014. [Google Scholar]
Concept Category | Entity |
---|---|
User ID | 0, 1, 2, … |
Transmission Rate (bps) | |
Bit Error Rate | |
Energy Efficiency (bps/W) | |
Spectral Efficiency (bps/Hz) | |
Channel Scenario | |
Line-of-Sight Type | |
User Properties | Channel Power |
The Number of paths | |
Power Distribution of paths | |
Delay Spread | |
Power Angle Spectrum | |
Angle Spread | |
Mobility | |
Air Interface ID | 0, 1, 2, … |
Information Encoding Schemes | |
Channel Encoding Schemes | |
Signal Modulation Schemes | |
Air Interface Properties | Allocation Schemes of Transmission Power |
Allocation Schemes of Receiving Power | |
Beam Precoding Designs | |
Channel Encoding Schemes |
Relation Type | Head Entity | Tail Entity |
---|---|---|
Belongs To | User Properties | User ID |
Belongs To | Air Interface Properties | Air Interface ID |
Similarity | User ID | User ID |
Adaptation | User ID | Air Interface ID |
Carrier Frequency | Subcarrier Spacing | Slots | RBs of Each Slot |
---|---|---|---|
30 GHz | 120 kHz | 2 | 21 |
N | F | F | The Power Spectral Density of Noise | ||
---|---|---|---|---|---|
20 | 128 | 25 MHz | 38% | 1 W | −174 dBm/Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, X.; Zheng, Z.; Zeng, M.; Fei, Z. Knowledge Graph-Based Multi-Objective Recommendation for a 6G Air Interface: A Digital Twin Empowered Approach. Electronics 2025, 14, 637. https://doi.org/10.3390/electronics14030637
Li Y, Wang X, Zheng Z, Zeng M, Fei Z. Knowledge Graph-Based Multi-Objective Recommendation for a 6G Air Interface: A Digital Twin Empowered Approach. Electronics. 2025; 14(3):637. https://doi.org/10.3390/electronics14030637
Chicago/Turabian StyleLi, Yuan, Xinyao Wang, Zhong Zheng, Ming Zeng, and Zesong Fei. 2025. "Knowledge Graph-Based Multi-Objective Recommendation for a 6G Air Interface: A Digital Twin Empowered Approach" Electronics 14, no. 3: 637. https://doi.org/10.3390/electronics14030637
APA StyleLi, Y., Wang, X., Zheng, Z., Zeng, M., & Fei, Z. (2025). Knowledge Graph-Based Multi-Objective Recommendation for a 6G Air Interface: A Digital Twin Empowered Approach. Electronics, 14(3), 637. https://doi.org/10.3390/electronics14030637