Trends and Applications of Artificial Intelligence in Project Management
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Keyword Analysis
4.2. Trend Analysis
4.3. Thematic Map and Clusters
4.4. Future Prospects and Challenges
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Raisch, S.; Krakowski, S. Artificial Intelligence and Management: The Automation-Augmentation Paradox. Acad. Manag. Rev. 2020, 46, 192–210. [Google Scholar] [CrossRef]
- Fridgeirsson, T.V.; Ingason, H.T.; Jonasson, H.I.; Jonsdottir, H. An Authoritative Study on the Near Future Effect of Artificial Intelligence on Project Management Knowledge Areas. Sustainability 2021, 13, 2345. [Google Scholar] [CrossRef]
- Bargavi, R. AI for Optimal Decision-Making in Industry 4.0. In AI-Driven IoT Systems for Industry 4.0; CRC Press: Boca Raton, FL, USA, 2024; pp. 185–205. [Google Scholar] [CrossRef]
- Aldoseri, A.; Al-Khalifa, K.N.; Hamouda, A.M. AI-Powered Innovation in Digital Transformation: Key Pillars and Industry Impact. Sustainability 2024, 16, 1790. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R.; Gonzalez, E.S. Understanding the Adoption of Industry 4.0 Technologies in Improving Environmental Sustainability. Sustain. Oper. Comput. 2022, 3, 203–217. [Google Scholar] [CrossRef]
- Taboada, I.; Daneshpajouh, A.; Toledo, N.; de Vass, T. Artificial Intelligence Enabled Project Management: A Systematic Literature Review. Appl. Sci. 2023, 13, 5014. [Google Scholar] [CrossRef]
- Uddin, S.; Yan, S.; Lu, H. Machine Learning and Deep Learning in Project Analytics: Methods, Applications and Research Trends. Prod. Plan. Control 2024. ahead of print. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, J.; Lee, E.B.; Lee, J.H. Application of Natural Language Processing (NLP) and Text-Mining of Big-Data to Engineering-Procurement-Construction (EPC) Bid and Contract Documents. In Proceedings of the 2020 6th Conference on Data Science and Machine Learning Applications (CDMA), Riyadh, Saudi Arabia, 4–5 March 2020; pp. 123–128. [Google Scholar] [CrossRef]
- Uddin, S.; Ong, S.; Lu, H. Machine Learning in Project Analytics: A Data-Driven Framework and Case Study. Sci. Rep. 2022, 12, 15252. [Google Scholar] [CrossRef]
- Prasetyo, M.L.; Peranginangin, R.A.; Martinovic, N.; Ichsan, M.; Wicaksono, H. Artificial Intelligence in Open Innovation Project Management: A Systematic Literature Review on Technologies, Applications, and Integration Requirements. J. Open Innov. Technol. Mark. Complex. 2025, 11, 100445. [Google Scholar] [CrossRef]
- Fisher, S.; Rosella, L.C. Priorities for Successful Use of Artificial Intelligence by Public Health Organizations: A Literature Review. BMC Public Health 2022, 22, 2146. [Google Scholar] [CrossRef]
- Wamba-Taguimdje, S.L.; Fosso Wamba, S.; Kala Kamdjoug, J.R.; Tchatchouang Wanko, C.E. Influence of Artificial Intelligence (AI) on Firm Performance: The Business Value of AI-Based Transformation Projects. Bus. Process Manag. J. 2020, 26, 1893–1924. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Roles of Artificial Intelligence in Construction Engineering and Management: A Critical Review and Future Trends. Autom. Constr. 2021, 122, 103517. [Google Scholar] [CrossRef]
- Ko, C.-H.; Cheng, M.-Y. Dynamic Prediction of Project Success Using Artificial Intelligence. J. Constr. Eng. Manag. 2007, 133, 316–324. [Google Scholar] [CrossRef]
- Liang, K.; Zhao, J.; Zhang, Z.; Guan, W.; Pan, M.; Li, M. Data-Driven AI Algorithms for Construction Machinery. Autom. Constr. 2024, 167, 105648. [Google Scholar] [CrossRef]
- Deiva Ganesh, A.; Kalpana, P. Future of Artificial Intelligence and Its Influence on Supply Chain Risk Management—A Systematic Review. Comput. Ind. Eng. 2022, 169, 108206. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Integrating BIM and AI for Smart Construction Management: Current Status and Future Directions. Arch. Comput. Methods Eng. 2022, 30, 1081–1110. [Google Scholar] [CrossRef]
- Murikah, W.; Nthenge, J.K.; Musyoka, F.M. Bias and Ethics of AI Systems Applied in Auditing—A Systematic Review. Sci. Afr. 2024, 25, e02281. [Google Scholar] [CrossRef]
- Al-Zahrani, A.M. Unveiling the Shadows: Beyond the Hype of AI in Education. Heliyon 2024, 10, e30696. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Fan, J.; Fu, H.; Zhang, B. Research on Optimization of Big Data Construction Engineering Quality Management Based on RNN-LSTM. Complexity 2018, 2018, 9691868. [Google Scholar] [CrossRef]
- Kattenborn, T.; Leitloff, J.; Schiefer, F.; Hinz, S. Review on Convolutional Neural Networks (CNN) in Vegetation Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2021, 173, 24–49. [Google Scholar] [CrossRef]
- Dey, R.; Salemt, F.M. Gate-Variants of Gated Recurrent Unit (GRU) Neural Networks. Midwest Symp. Circuits Syst. 2017, 2017, 1597–1600. [Google Scholar] [CrossRef]
- Chaphalkar, N.B.; Iyer, K.C.; Patil, S.K. Prediction of Outcome of Construction Dispute Claims Using Multilayer Perceptron Neural Network Model. Int. J. Proj. Manag. 2015, 33, 1827–1835. [Google Scholar] [CrossRef]
- Demiss, B.A.; Elsaigh, W.A. Application of Novel Hybrid Deep Learning Architectures Combining Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN): Construction Duration Estimates Prediction Considering Preconstruction Uncertainties. Eng. Res. Express 2024, 6, 032102. [Google Scholar] [CrossRef]
- Cancer, V.; Tominc, P.; Rozman, M. Multi-Criteria Measurement of AI Support to Project Management. IEEE Access 2023, 11, 142816–142828. [Google Scholar] [CrossRef]
- Elmousalami, H.H. Comparison of Artificial Intelligence Techniques for Project Conceptual Cost Prediction: A Case Study and Comparative Analysis. IEEE Trans. Eng. Manag. 2021, 68, 183–196. [Google Scholar] [CrossRef]
- Alzeyani, E.M.M.; Szabó, C. Comparative Evaluation of Model Accuracy for Predicting Selected Attributes in Agile Project Management. Mathematics 2024, 12, 2529. [Google Scholar] [CrossRef]
- Zhang, X.; Antwi-Afari, M.F.; Zhang, Y.; Xing, X. The Impact of Artificial Intelligence on Organizational Justice and Project Performance: A Systematic Literature and Science Mapping Review. Buildings 2024, 14, 259. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Del Bosque, A.; Lampropoulos, G.; Vergara, D. Nanocomposites for Multifunctional Sensors: A Comprehensive Bibliometric Exploration. Nanomaterials 2024, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Del Bosque, A.; Vergara, D.; Lampropoulos, G.; Fernández-Arias, P. Energy Storage in Carbon Fiber-Based Batteries: Trends and Future Perspectives. Appl. Sci. 2024, 14, 10034. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Del Bosque, A.; Fernández-Arias, P.; Vergara, D. Titanium Additive Manufacturing with Powder Bed Fusion: A Bibliometric Perspective. Appl. Sci. 2024, 14, 10543. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.K.D.; Chitta, S.; Bonam, V.S.M.; Katari, P.; Thota, S. AI-Assisted Project Management: Enhancing Decision-Making and Forecasting. J. Artif. Intell. Res. 2023, 3, 146–171. [Google Scholar]
- Abayomi Odejide, O.; Esther Edunjobi, T.; Author, C. AI in Project Management: Exploring Theoretical Models for Decision-Making and Risk Management. Eng. Sci. Technol. J. 2024, 5, 1072–1085. [Google Scholar] [CrossRef]
- Pratama, I.N.; Dachyar, M.; Pratama, N.R. Optimization of Resource Allocation and Task Allocation with Project Management Information Systems in Information Technology Companies. TEM J. 2023, 12, 1814–1824. [Google Scholar] [CrossRef]
- Ali, S.; Abuhmed, T.; El-Sappagh, S.; Muhammad, K.; Alonso-Moral, J.M.; Confalonieri, R.; Guidotti, R.; Del Ser, J.; Díaz-Rodríguez, N.; Herrera, F. Explainable Artificial Intelligence (XAI): What We Know and What Is Left to Attain Trustworthy Artificial Intelligence. Inf. Fusion 2023, 99, 101805. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, H.; Baxter, D.; Dacre, N. Agile Meets Digital: A Systematic Literature Review on the Interplay between Agile Project Management and Digital Transformation. SSRN Electron. J. 2023, 30, 1081–1110. [Google Scholar] [CrossRef]
- Sicilia, M.-A.; Bessis, N.; Trovati, M.; Hassani, H.; Silva, E.S. The Role of ChatGPT in Data Science: How AI-Assisted Conversational Interfaces Are Revolutionizing the Field. Big Data Cogn. Comput. 2023, 7, 62. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P. A Study on ChatGPT for Industry 4.0: Background, Potentials, Challenges, and Eventualities. J. Econ. Technol. 2023, 1, 127–143. [Google Scholar] [CrossRef]
- Zabala-Vargas, S.; Jaimes-Quintanilla, M.; Jimenez-Barrera, M.H. Big Data, Data Science, and Artificial Intelligence for Project Management in the Architecture, Engineering, and Construction Industry: A Systematic Review. Buildings 2023, 13, 2944. [Google Scholar] [CrossRef]
- Saklamaeva, V.; Pavlič, L. The Potential of AI-Driven Assistants in Scaled Agile Software Development. Appl. Sci. 2023, 14, 319. [Google Scholar] [CrossRef]
- Felicetti, A.M.; Cimino, A.; Mazzoleni, A.; Ammirato, S. Artificial Intelligence and Project Management: An Empirical Investigation on the Appropriation of Generative Chatbots by Project Managers. J. Innov. Knowl. 2024, 9, 100545. [Google Scholar] [CrossRef]
- Haase, J.; Walker, P.B.; Berardi, O.; Karwowski, W. Get Real Get Better: A Framework for Developing Agile Program Management in the U.S. Navy Supported by the Application of Advanced Data Analytics and AI. Technologies 2023, 11, 165. [Google Scholar] [CrossRef]
- Abedsoltan, H.; Abedsoltan, A.; Zoghi, Z. Future of Process Safety: Insights, Approaches, and Potential Developments. Process Saf. Environ. Prot. 2024, 185, 684–707. [Google Scholar] [CrossRef]
- Regona, M.; Yigitcanlar, T.; Xia, B.; Li, R.Y.M. Opportunities and Adoption Challenges of AI in the Construction Industry: A PRISMA Review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 45. [Google Scholar] [CrossRef]
- Plekhanov, D.; Franke, H.; Netland, T.H. Digital Transformation: A Review and Research Agenda. Eur. Manag. J. 2023, 41, 821–844. [Google Scholar] [CrossRef]
- Kor, M.; Yitmen, I.; Alizadehsalehi, S. An Investigation for Integration of Deep Learning and Digital Twins towards Construction 4.0. Smart Sustain. Built Environ. 2023, 12, 461–487. [Google Scholar] [CrossRef]
- Bento, S.; Pereira, L.; Gonçalves, R.; Dias, Á.; da Costa, R.L. Artificial Intelligence in Project Management: Systematic Literature Review. Int. J. Technol. Intell. Plan. 2022, 13, 143–163. [Google Scholar] [CrossRef]
- Ruiz, J.G.; Torres, J.M.; Crespo, R.G. The Application of Artificial Intelligence in Project Management Research: A Review. Int. J. Interact. Multimed. Artif. Intell. 2021, 6, 54–66. [Google Scholar] [CrossRef]
- Ong, S.; Uddin, S. Data Science and Artificial Intelligence in Project Management: The Past, Present and Future. J. Mod. Proj. Manag. 2020, 7, 26–33. [Google Scholar] [CrossRef]
- Lampropoulos, G. Artificial Intelligence, Big Data, and Machine Learning in Industry 4.0. In Encyclopedia of Data Science and Machine Learning; IGI Global Scientific Publishing: Hershey, PA, USA, 2022; pp. 2101–2109. [Google Scholar] [CrossRef]
- Prifti, V. Optimizing Project Management Using Artificial Intelligence. Eur. J. Form. Sci. Eng. 2022, 5, 29–37. [Google Scholar] [CrossRef]
- Lei, H.; Lai, W.; Feaster, W.; Chang, A.C. Artificial Intelligence and Agile Project Management. In Intelligence-Based Cardiology and Cardiac Surgery: Artificial Intelligence and Human Cognition in Cardiovascular Medicine; Academic Press: Cambridge, MA, USA, 2024; pp. 401–405. [Google Scholar] [CrossRef]
- Müller, R.; Locatelli, G.; Holzmann, V.; Nilsson, M.; Sagay, T. Artificial Intelligence and Project Management: Empirical Overview, State of the Art, and Guidelines for Future Research. Proj. Manag. J. 2024, 55, 9–15. [Google Scholar] [CrossRef]
- Mahfuzul, M.; Shamim, I. Artificial Intelligence in Project Management: Enhancing Efficiency and Decision-Making. Int. J. Manag. Inf. Syst. Data Sci. 2024, 1, 1–6. [Google Scholar] [CrossRef]
- Barcaui, A.; Monat, A. Who Is Better in Project Planning? Generative Artificial Intelligence or Project Managers? Proj. Leadersh. Soc. 2023, 4, 100101. [Google Scholar] [CrossRef]
- Ghasemaghaei, M.; Kordzadeh, N. Understanding How Algorithmic Injustice Leads to Making Discriminatory Decisions: An Obedience to Authority Perspective. Inf. Manag. 2024, 61, 103921. [Google Scholar] [CrossRef]
- Alenezi, M.; Akour, M. AI-Driven Innovations in Software Engineering: A Review of Current Practices and Future Directions. Appl. Sci. 2025, 15, 1344. [Google Scholar] [CrossRef]
- Kineber, A.F.; Elshaboury, N.; Oke, A.E.; Aliu, J.; Abunada, Z.; Alhusban, M. Revolutionizing Construction: A Cutting-Edge Decision-Making Model for Artificial Intelligence Implementation in Sustainable Building Projects. Heliyon 2024, 10, e37078. [Google Scholar] [CrossRef] [PubMed]
Year | MeanTCperDoc | N | MeanTCperYear | CitableYears |
---|---|---|---|---|
2019 | 12.33 | 3 | 1.76 | 7 |
2020 | 39.71 | 7 | 6.62 | 6 |
2021 | 11.53 | 17 | 2.31 | 5 |
2022 | 11.27 | 11 | 2.82 | 4 |
2023 | 3.09 | 34 | 1.03 | 3 |
2024 | 0.72 | 43 | 0.36 | 2 |
Journal | Rank | Freq. | cumFreq. | Cluster |
---|---|---|---|---|
Applied Sciences | 1 | 3 | 3 | Cluster 1 |
ITNOW | 2 | 3 | 6 | Cluster 1 |
Lecture Notes in Networks and Systems | 3 | 3 | 9 | Cluster 1 |
Sustainability | 4 | 3 | 12 | Cluster 1 |
IEEE International Conference on Software Engineering and Artificial Intelligence (SEAI) | 5 | 2 | 14 | Cluster 1 |
AIP Conference Proceedings | 6 | 2 | 16 | Cluster 1 |
ASEE Annual Conference and Exposition, Conference Proceedings | 7 | 2 | 18 | Cluster 1 |
Buildings | 8 | 2 | 20 | Cluster 1 |
Built Environment Project and Asset Management | 9 | 2 | 22 | Cluster 1 |
CEUR Workshop Proceedings | 10 | 2 | 24 | Cluster 1 |
IEEE Engineering Management Review | 11 | 2 | 26 | Cluster 1 |
International Journal of Advanced Computer Science and Applications | 12 | 2 | 28 | Cluster 1 |
Project Management Journal | 13 | 2 | 30 | Cluster 1 |
Country | Articles | SCP | MCP | Freq | MCP_Ratio |
---|---|---|---|---|---|
China | 11 | 10 | 1 | 0.096 | 0.091 |
India | 11 | 11 | 0 | 0.096 | 0 |
United States | 9 | 9 | 0 | 0.078 | 0 |
United Kingdom | 8 | 6 | 2 | 0.07 | 0.25 |
Australia | 5 | 3 | 2 | 0.043 | 0.4 |
Italy | 5 | 5 | 0 | 0.043 | 0 |
Spain | 5 | 4 | 1 | 0.043 | 0.2 |
Germany | 4 | 4 | 0 | 0.035 | 0 |
Ukraine | 4 | 4 | 0 | 0.035 | 0 |
Country | TC | Average Article Citations |
---|---|---|
United Kingdom | 151 | 18.9 |
Vietnam | 70 | 70 |
Australia | 69 | 13.8 |
South Korea | 67 | 33.5 |
China | 47 | 4.3 |
Singapore | 47 | 47 |
United States | 47 | 5.2 |
Germany | 45 | 11.2 |
Spain | 44 | 8.8 |
Iceland | 31 | 10.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergara, D.; del Bosque, A.; Lampropoulos, G.; Fernández-Arias, P. Trends and Applications of Artificial Intelligence in Project Management. Electronics 2025, 14, 800. https://doi.org/10.3390/electronics14040800
Vergara D, del Bosque A, Lampropoulos G, Fernández-Arias P. Trends and Applications of Artificial Intelligence in Project Management. Electronics. 2025; 14(4):800. https://doi.org/10.3390/electronics14040800
Chicago/Turabian StyleVergara, Diego, Antonio del Bosque, Georgios Lampropoulos, and Pablo Fernández-Arias. 2025. "Trends and Applications of Artificial Intelligence in Project Management" Electronics 14, no. 4: 800. https://doi.org/10.3390/electronics14040800
APA StyleVergara, D., del Bosque, A., Lampropoulos, G., & Fernández-Arias, P. (2025). Trends and Applications of Artificial Intelligence in Project Management. Electronics, 14(4), 800. https://doi.org/10.3390/electronics14040800