Driver Identification System Based on a Machine Learning Operations Platform Using Controller Area Network Data
Abstract
:1. Introduction
1.1. Research Background
1.1.1. Research Overview
1.1.2. Literature Overview
2. Vehicle (Local Edge)
2.1. CAN Data Collection and Preprocessing
2.2. Classification of Driving Conditions and Training Data Generation
2.2.1. Driving Condition Classification Criteria
2.2.2. Generation of Training Data
2.3. Driving Condition MTF Visualization
2.4. Performance Evaluation of the Retrained Classification Model
3. MLOps Platform (Cloud)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Wang, J. A survey on vehicle security: Challenges and solutions. J. Transp. Secur. 2023, 16, 25–45. [Google Scholar]
- Song, Y.J. Real-time Driver Behavior Recognition System Using a CNN-LSTM Model. Master’s Thesis, Hanyang University, Seoul, Republic of Korea, February 2021. [Google Scholar]
- Ezzini, S.; Berrada, I.; Ghogho, M. Who is behind the wheel? Driver identification and fingerprinting. J. Big Data 2018, 5, 9. [Google Scholar] [CrossRef]
- Abdennour, N.; Ouni, T.; Ben Amor, N. Driver identification using only the CAN-Bus vehicle data through an RCN deep learning approach. Robot. Auton. Syst. 2021, 136, 103707. [Google Scholar] [CrossRef]
- Dolos, K.; Meyer, C.; Attenberger, A.; Steinberger, J. Driver identification using in-vehicle digital data in the forensic context of a hit and run accident. Forensic Sci. Int. Digit. Investig. 2020, 35, 301090. [Google Scholar]
- Peppes, N.; Alexakis, T.; Adamopoulou, E.; Demestichas, K. Driving Behaviour Analysis Using Machine and Deep Learning Methods for Continuous Streams of Vehicular Data. Sensors 2021, 21, 4704. [Google Scholar] [CrossRef]
- John, M.M.; Olsson, H.H.; Bosch, J. Towards MLOps: A Framework and Maturity Model. In Proceedings of the 47th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Palermo, Italy, 1–3 September 2021. [Google Scholar]
- Kreuzberger, D.; Kühl, N.; Hirschl, S. Machine Learning Operations (MLOps): Overview, Definition, and Architecture. IEEE Access 2023, 11, 31866–31875. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, W.; Jiao, J.; Wang, W.; Butrovich, M.; Lim, W.S.; Menon, P.; Pavlo, A. MB2: Decomposed Behavior Modeling for Self-Driving Database Management Systems. In Proceedings of the 2021 International Conference on Management of Data (SIGMOD ’21), Virtual Event, 20–25 June 2021. [Google Scholar]
- Hallac, D.; Sharang, A.; Stahlmann, R.; Lamprecht, A.; Huber, M.; Roehder, M.; Sosič, R.; Leskovec, J. Driver Identification Using Automobile Sensor Data from a Single Turn. In Proceedings of the 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016. [Google Scholar]
- Yang, J.; Zhao, R.; Zhu, M.; Hallac, D.; Sodnik, J.; Leskovec, J. Driver2vec: Driver Identification from Automotive Data. In Proceedings of the 2020 MileTS Workshop, ACM, San Diego, CA, USA, 24 August 2020. [Google Scholar]
- Lee, S.H.; Lim, J.B.; Kim, T.G.; Cho, Y.H.; Lee, J.S.; Jeon, D.K.; Kim, D.H.; Choi, J.W.; Baek, Y.J. CNN-based Driver Identification Method for Long-Term Time Series Driving Data. In Proceedings of the 2022 Korean Institute of Communications and Information Sciences (KICS) Winter Conference, Pyeongchang, Republic of Korea, 9–11 February 2022. [Google Scholar]
- Kim, J. Driver Identification Model Using CAN Data and LiDAR Data. Master’s Thesis, Konkuk University, Department of Smart Vehicle Engineering, Seoul, Republic of Korea, February 2023. [Google Scholar]
- Zhang, S.; Zhao, C.; Zhang, Z.; Lv, Y. Driving simulator validation studies: A systematic review. Simul. Model. Pract. Theory 2025, 138, 103020. [Google Scholar] [CrossRef]
- Reimer, B.; D’Ambrosio, L.A.; Coughlin, J.F.; Kafrissen, M.E.; Biederman, J. Using self-reported data to assess the validity of driving simulation data. Behav. Res. Methods 2006, 38, 314–324. [Google Scholar] [CrossRef]
- Wang, M.; Yi, H.; Jiang, F.; Lin, L.; Gao, M. Review on Offloading of Vehicle Edge Computing. J. Artif. Intell. Technol. 2022, 2, 132–143. [Google Scholar] [CrossRef]
- Lin, L.; Liao, X.; Jin, H.; Li, P. Computation Offloading Toward Edge Computing. Proc. IEEE 2019, 107, 1584–1592. [Google Scholar] [CrossRef]
- Avatefipour, O.; Malik, H. State-of-the-Art Survey on In-Vehicle Network Communication: “CAN-Bus” Security and Vulnerabilities. J. Automot. Cybersecur. 2022, 7, 45–67. [Google Scholar]
- Kim, E.D.; Ko, S.K.; Son, S.C.; Lee, B.T. Technical Trends of Time-Series Data Imputation. Electron. Telecommun. Trends 2021, 36, 146–153. [Google Scholar]
- Thakur, K.; Kumar, H.; Snehmani. Advancing Missing Data Imputation in Time-Series: A Review and Proposed Prototype. In Proceedings of the 2023 International Conference on Emerging Trends in Networks and Computer Communications (ETNCC), Windhoek, Namibia, 16–18 August 2023. [Google Scholar]
- Maharana, K.; Mondal, S.; Nemade, B. A Review: Data Pre-Processing and Data Augmentation Techniques. Glob. Transit. Proc. 2022, 3, 91–99. [Google Scholar] [CrossRef]
- Mumuni, A.; Mumuni, F. Data Augmentation: A Comprehensive Survey of Modern Approaches. Array 2022, 16, 100258. [Google Scholar] [CrossRef]
- Park, J.; Abdel-Aty, M. Safety Performance of Combinations of Traffic and Roadway Cross-Sectional Design Elements at Straight and Curved Segments. J. Transp. Eng. Part A Syst. 2017, 143, 04017015. [Google Scholar] [CrossRef]
- Múčka, P. Longitudinal Road Profile Spectrum Approximation by Split Straight Lines. J. Transp. Eng. 2012, 138, 243–251. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, W.; Oates, T. Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline. In Proceedings of the 2017 IEEE International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017. [Google Scholar]
- Sherstinsky, A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network. Phys. D 2020, 404, 132306. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Wang, Z.; Oates, T. Encoding Time Series as Images for Visual Inspection and Classification Using Tiled Convolutional Neural Networks. In Proceedings of the 2015 AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015. [Google Scholar]
- Lin, J.; Keogh, E.; Wei, L.; Lonardi, S. Experiencing SAX: A Novel Symbolic Representation of Time Series. Data Min. Knowl. Discov. 2007, 15, 107–144. [Google Scholar] [CrossRef]
- Wu, Z.; Shen, C.; van den Hengel, A. Wider or Deeper: Revisiting the ResNet Model for Visual Recognition. Pattern Recognit. 2019, 90, 119–133. [Google Scholar] [CrossRef]
- Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; Weinberger, K.Q. Deep Networks with Stochastic Depth. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Novaković, J.D.; Veljović, A.; Ilić, S.S.; Papić, Z.; Tomović, M. Evaluation of Classification Models in Machine Learning. Theory Appl. Math. Comput. Sci. 2017, 7, 39–46. [Google Scholar]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756. [Google Scholar]
- Hand, D.J. Classifier Technology and the Illusion of Progress. Stat. Sci. 2006, 21, 1–15. [Google Scholar] [CrossRef]
- Subashini, S.; Kavitha, V. A Survey on Security Issues in Service Delivery Models of Cloud Computing. J. Netw. Comput. Appl. 2011, 34, 1–11. [Google Scholar] [CrossRef]
- Yang, T.; Sun, R.; Rathore, R.S.; Baig, I. Enhancing Cybersecurity and Privacy Protection for Cloud Computing-Assisted Vehicular Network of Autonomous Electric Vehicles: Applications of Machine Learning. World Electr. Veh. J. 2025, 16, 14. [Google Scholar] [CrossRef]
Study | Category | Data Source | Methodology | Accuracy | Strengths | Limitations | |
---|---|---|---|---|---|---|---|
1 | David Hallac et al. (2016) [10] | Sensor-based methods | Real-world data (10 vehicles, 64 drivers) | Analyzing sensor data from a single turn | 76.9% (2 drivers), 50.1% (5 drivers) | Uses real-world data, focuses on unique driving behaviors | Limited to single-turn analysis |
2 | Jingbo Yang et al. (2020) [11] | Machine learning methods | Simulation data | Deep learning model using sensor | 83.1% | High accuracy, effective across different conditions | Simulation data may not fully reflect real-world scenarios |
3 | Lee et al. (2022) [12] | Machine learning methods | Driving simulator (7 drivers) | CNN model with sliding window technique | 19.94% improvement over conventional CNN | Sliding window technique improves time-series processing | No real-world vehicle data; limited driver diversity |
4 | Kim Ju Yeop (2023) [13] | Machine learning methods | Real-world data (CAN + LiDAR) | CNN model with Recurrence Plot (RP) visualization | Improved classification using LiDAR + CAN | Combines CAN and LiDAR data for enhanced accuracy | Low accuracy in certain scenarios; real-time processing limitations |
5 | Proposed | Machine learning methods | Real-world data (CAN) | Markov Transition Field (MTF) visualization with real-time adaptation | Continuously improving accuracy with real-time retraining | Driver change detection, adaptation to evolving behaviors and enhanced classification accuracy with MTF | Low accuracy in linear driving scenarios |
Index Time (s) | Steering Angle (°) | Vehicle Speed (km/h) | GPS Longitude (°) | GPS Latitude (°) | Following Distance (m) |
---|---|---|---|---|---|
Idx_time | EPS_SteeringAngle | VCU_VehicleSpeed_STD | GPS_Longitude | GPS_Latitude | ADAS_DistanceToTarget |
Driving Condition | Criteria |
---|---|
Left Turn |
|
Right Turn |
|
U-turn |
|
Start |
|
Stop |
|
Straight |
|
Training | Testing | Validation | Eval (Intruder) | |
---|---|---|---|---|
Driver A (Registered) | 560 | 70 | 70 | 700 |
Driver B (Registered) | 560 | 70 | 70 | |
Driver C (Registered) | 560 | 70 | 70 |
Driving Condition | Accuracy (%) |
---|---|
Left Turn | 70.13 |
Right Turn | 72.3 |
U-turn | 79.32 |
Start | 62.67 |
Stop | 52.21 |
Straight | 54.22 |
Accuracy | Precision | Recall | F1-Score | |
---|---|---|---|---|
Left | 0.7013 | 0.7191 | 0.6813 | 0.6536 |
Right | 0.7230 | 0.7235 | 0.7030 | 0.6958 |
Uturn | 0.7932 | 0.8147 | 0.7732 | 0.7758 |
Model | Training Set | Dataset Size | Eval Set (Images) |
---|---|---|---|
Past Included | Past A + Recent B + Recent C | 1200 | Recent A (400) |
Recent Only | Recent A + Recent B + Recent C | 1200 | Recent A (400) |
Model | Left Turn (%) | Right Turn (%) | U-Turn (%) |
---|---|---|---|
Past Included | 33.50% | 48.75% | 39.50% |
Recent Only | 66.50% | 72.50% | 78.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.; Park, W.; Kim, S.; Kweon, J.; Moon, C. Driver Identification System Based on a Machine Learning Operations Platform Using Controller Area Network Data. Electronics 2025, 14, 1138. https://doi.org/10.3390/electronics14061138
Shin H, Park W, Kim S, Kweon J, Moon C. Driver Identification System Based on a Machine Learning Operations Platform Using Controller Area Network Data. Electronics. 2025; 14(6):1138. https://doi.org/10.3390/electronics14061138
Chicago/Turabian StyleShin, Hyunseo, Wangyu Park, Suhong Kim, Juhum Kweon, and Changjoo Moon. 2025. "Driver Identification System Based on a Machine Learning Operations Platform Using Controller Area Network Data" Electronics 14, no. 6: 1138. https://doi.org/10.3390/electronics14061138
APA StyleShin, H., Park, W., Kim, S., Kweon, J., & Moon, C. (2025). Driver Identification System Based on a Machine Learning Operations Platform Using Controller Area Network Data. Electronics, 14(6), 1138. https://doi.org/10.3390/electronics14061138