FFTNet: Fusing Frequency and Temporal Awareness in Long-Term Time Series Forecasting
Abstract
:1. Introduction
2. Related Work
2.1. Time Domain Methods
2.2. Frequency Domain Methods
2.3. Hybrid Time–Frequency Methods
3. Methodology
3.1. Patching
3.2. Comparing 2D CNNs vs. 1D CNNs
3.3. Frequency MLP vs. Time-Domain MLP
3.4. Local-Context ConvBlock (LCCB)
3.5. Global-Cyclic Recogniser (GCR)
3.6. Frequency Time Aggregation Block (FTAB)
3.7. Normalisation and Loss Functions
4. Experiments
4.1. Datasets
4.2. Baselines and Metrics
4.3. Implementation Details
4.4. Long-Term Time Series Forecasting
4.5. Visualisation
4.6. Ablation Study
4.7. Model Analysis
4.8. Robustness Analysis
5. Conclusions
6. Limitations and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, L.; Carver, R.; Lopez-Gomez, I.; Sha, F.; Anderson, J. Generative emulation of weather forecast ensembles with diffusion models. Sci. Adv. 2024, 10, eadk4489. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Shao, H.; Yan, S.; Xiao, Y.; Liu, B. Multiscale information enhanced spatial-temporal graph convolutional network for multivariate traffic flow forecasting via magnifying perceptual scope. Eng. Appl. Artif. Intell. 2024, 136, 109010. [Google Scholar] [CrossRef]
- Edalatpanah, S.A.; Hassani, F.S.; Smarandache, F.; Sorourkhah, A.; Pamucar, D.; Cui, B. A hybrid time series forecasting method based on neutrosophic logic with applications in financial issues. Eng. Appl. Artif. Intell. 2024, 129, 107531. [Google Scholar] [CrossRef]
- Yang, C.; Yan, J.; Wang, G. Time Series Trends Forecasting for Manufacturing Enterprises in the Digital Age. J. Organ. End User Comput. (JOEUC) 2024, 36, 1–22. [Google Scholar] [CrossRef]
- Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; Sun, L. Transformers in time series: A survey. arXiv 2022, arXiv:2202.07125. [Google Scholar]
- Wang, H.; Peng, J.; Huang, F.; Wang, J.; Chen, J.; Xiao, Y. Micn: Multi-scale local and global context modeling for long-term series forecasting. In Proceedings of the Eleventh International Conference on Learning Representations, Kigali, Rwanda, 1–5 May 2023. [Google Scholar]
- Wu, H.; Hu, T.; Liu, Y.; Zhou, H.; Wang, J.; Long, M. Timesnet: Temporal 2d-variation modeling for general time series analysis. arXiv 2022, arXiv:2210.02186. [Google Scholar]
- Ailing, Z.; Muxi, C.; Lei, Z.; Qiang, X. Are transformers effective for time series forecasting. In Proceedings of the AAAI conference on artificial intelligence, Washington, DC, USA, 7–14 February 2023. [Google Scholar]
- Chen, S.A.; Li, C.L.; Yoder, N.; Arik, S.O.; Pfister, T. Tsmixer: An all-mlp architecture for time series forecasting. arXiv 2023, arXiv:2303.06053. [Google Scholar]
- Yi, K.; Zhang, Q.; Fan, W.; Wang, S.; Wang, P.; He, H.; An, N.; Lian, D.; Cao, L.; Niu, Z. Frequency-domain MLPs are more effective learners in time series forecasting. Adv. Neural Inf. Process. Syst. 2024, 36, 76656–76679. [Google Scholar]
- Lin, S.; Lin, W.; Wu, W.; Zhao, F.; Mo, R.; Zhang, H. SegRNN: Segment Recurrent Neural Network for Long-Term Time Series Forecasting. arXiv 2023, arXiv:2308.11200. [Google Scholar]
- Wen, R.; Torkkola, K.; Narayanaswamy, B.; Madeka, D. A multi-horizon quantile recurrent forecaster. arXiv 2017, arXiv:1711.11053. [Google Scholar]
- Liu, S.; Yu, H.; Liao, C.; Li, J.; Lin, W.; Liu, A.X.; Dustdar, S. Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting. In Proceedings of the International Conference on Learning Representations, Vienna, Austria, 4 May 2021. [Google Scholar]
- Zhang, Y.; Ma, L.; Pal, S.; Zhang, Y.; Coates, M. Multi-resolution Time-Series Transformer for Long-term Forecasting. In Proceedings of the International Conference on Artificial Intelligence and Statistics, PMLR, Valencia, Spain, 2–4 May 2024; pp. 4222–4230. [Google Scholar]
- Whittle, P. Prediction and Regulation by Linear Least-Square Methods; Mathematical Control Theory; English University Press: London, UK, 1963. [Google Scholar]
- Atesongun, A.; Gulsen, M. A Hybrid Forecasting Structure Based on Arima and Artificial Neural Network Models. Appl. Sci. 2024, 14, 7122. [Google Scholar] [CrossRef]
- Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.X.; Yan, X. Enhancing the Locality and Breaking the Memory Bottleneck of Transformer on Time Series Forecasting. In Proceedings of the Advances in Neural Information Processing Systems; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: San Francisco, CA, USA, 2019; Volume 32. [Google Scholar]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. arXiv 2020, arXiv:2012.07436. [Google Scholar] [CrossRef]
- Wu, H.; Xu, J.; Wang, J.; Long, M. Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting. In Proceedings of the Neural Information Processing Systems, Online, 6–14 December 2021. [Google Scholar]
- Nie, Y.; Nguyen, N.H.; Sinthong, P.; Kalagnanam, J. A time series is worth 64 words: Long-term forecasting with transformers. arXiv 2022, arXiv:2211.14730. [Google Scholar]
- Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks. In Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, New York, NY, USA, 8–12 July 2018; SIGIR ’18. pp. 95–104. [Google Scholar] [CrossRef]
- Bergsma, S.; Zeyl, T.; Rahimipour Anaraki, J.; Guo, L. C2FAR: Coarse-to-Fine Autoregressive Networks for Precise Probabilistic Forecasting. In Proceedings of the Advances in Neural Information Processing Systems; Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A., Eds.; Curran Associates, Inc.: San Francisco, CA, USA, 2022; Volume 35, pp. 21900–21915. [Google Scholar]
- Tan, Y.; Xie, L.; Cheng, X. Neural Differential Recurrent Neural Network with Adaptive Time Steps. arXiv 2023, arXiv:2306.01674. [Google Scholar] [CrossRef]
- Fan, W.; Zheng, S.; Yi, X.; Cao, W.; Fu, Y.; Bian, J.; Liu, T.Y. DEPTS: Deep Expansion Learning for Periodic Time Series Forecasting. arXiv 2022, arXiv:2203.07681. [Google Scholar]
- Wang, S.; Wu, H.; Shi, X.; Hu, T.; Luo, H.; Ma, L.; Zhang, J.Y.; Zhou, J. Timemixer: Decomposable multiscale mixing for time series forecasting. arXiv 2024, arXiv:2405.14616. [Google Scholar]
- Li, Z.; Rao, Z.; Pan, L.; Xu, Z. MTS-Mixers: Multivariate Time Series Forecasting via Factorized Temporal and Channel Mixing. arXiv 2023, arXiv:2302.04501. [Google Scholar]
- Das, A.; Kong, W.; Leach, A.B.; Mathur, S.; Sen, R.; Yu, R. Long-term Forecasting with TiDE: Time-series Dense Encoder. arXiv 2023, arXiv:2304.08424. [Google Scholar]
- Liu, M.; Zeng, A.; Chen, M.; Xu, Z.; Lai, Q.; Ma, L.; Xu, Q. Scinet: Time series modeling and forecasting with sample convolution and interaction. Adv. Neural Inf. Process. Syst. 2022, 35, 5816–5828. [Google Scholar]
- Cao, D.; Wang, Y.; Duan, J.; Zhang, C.; Zhu, X.; Huang, C.; Tong, Y.; Xu, B.; Bai, J.; Tong, J.; et al. Spectral temporal graph neural network for multivariate time-series forecasting. Adv. Neural Inf. Process. Syst. 2020, 33, 17766–17778. [Google Scholar]
- Zhang, L.; Aggarwal, C.; Qi, G.J. Stock price prediction via discovering multi-frequency trading patterns. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 2141–2149. [Google Scholar]
- Woo, G.; Liu, C.; Sahoo, D.; Kumar, A.; Hoi, S. Cost: Contrastive learning of disentangled seasonal-trend representations for time series forecasting. arXiv 2022, arXiv:2202.01575. [Google Scholar]
- Zhou, T.; Ma, Z.; Wen, Q.; Sun, L.; Yao, T.; Yin, W.; Jin, R. Film: Frequency improved legendre memory model for long-term time series forecasting. Adv. Neural Inf. Process. Syst. 2022, 35, 12677–12690. [Google Scholar]
- Xu, Z.; Zeng, A.; Xu, Q. FITS: Modeling time series with 10k parameters. arXiv 2023, arXiv:2307.03756. [Google Scholar]
- Moosavi, V.; Vafakhah, M.; Shirmohammadi, B.; Behnia, N. A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods. Water Resour. Manag. 2013, 27, 1301–1321. [Google Scholar] [CrossRef]
- Joo, T.W.; Kim, S.B. Time series forecasting based on wavelet filtering. Expert Syst. Appl. 2015, 42, 3868–3874. [Google Scholar] [CrossRef]
- Oreshkin, B.N.; Carpov, D.; Chapados, N.; Bengio, Y. N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. arXiv 2019, arXiv:1905.10437. [Google Scholar]
- Yang, Z.; Yan, W.; Huang, X.; Mei, L. Adaptive Temporal-Frequency Network for Time-Series Forecasting. IEEE Trans. Knowl. Data Eng. 2022, 34, 1576–1587. [Google Scholar] [CrossRef]
- Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; Jin, R. Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting. In Proceedings of the International Conference on Machine Learning, PMLR, Baltimore, MD, USA, 17–23 July 2022; pp. 27268–27286. [Google Scholar]
- Dai, T.; Wu, B.; Liu, P.; Li, N.; Bao, J.; Jiang, Y.; Xia, S.T. Periodicity decoupling framework for long-term series forecasting. In Proceedings of the Twelfth International Conference on Learning Representations, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- Chen, P.; Zhang, Y.; Cheng, Y.; Shu, Y.; Wang, Y.; Wen, Q.; Yang, B.; Guo, C. Pathformer: Multi-scale transformers with adaptive pathways for time series forecasting. arXiv 2024, arXiv:2402.05956. [Google Scholar]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Rand, D., Young, L.S., Eds.; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar]
- Yi, K.; Fei, J.; Zhang, Q.; He, H.; Hao, S.; Lian, D.; Fan, W. FilterNet: Harnessing Frequency Filters for Time Series Forecasting. In Proceedings of the Thirty-eighth Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 10–15 December 2024. [Google Scholar]
- Ma, X.; Li, X.; Fang, L.; Zhao, T.; Zhang, C. U-Mixer: An Unet-Mixer Architecture with Stationarity Correction for Time Series Forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, Vancouver, BC, Canada, 20–27 February 2024; Volume 38, pp. 14255–14262. [Google Scholar]
- Loshchilov, I.; Hutter, F. Fixing weight decay regularization in adam. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Liu, Y.; Hu, T.; Zhang, H.; Wu, H.; Wang, S.; Ma, L.; Long, M. itransformer: Inverted transformers are effective for time series forecasting. arXiv 2023, arXiv:2310.06625. [Google Scholar]
Dimension | Frequency-Domain MLP | Time-Domain MLP |
---|---|---|
Processing Domain | Fourier space | Original signal space |
Operation Basis | Spectrum modulation | Linear combination and non-linear transformation |
Computational Complexity | (accelerated by FFT) | (fully-connected layer) |
Frequency Selection | Explicitly control the attenuation/enhancement of each frequency component | Implicitly learn frequency features, lacking a direct regulation mechanism |
Noise Robustness | Can improve the signal-to-noise ratio by suppressing high-frequency noise components | Prone to high-frequency noise interference, requiring additional regularisation |
Datasets | ETTh1 | ETTh2 | ETTm1 | ETTm2 | Weather | Electricity | Traffic |
---|---|---|---|---|---|---|---|
Values | 7 | 7 | 7 | 7 | 21 | 321 | 862 |
Frequency | 1 h | 1 h | 15 min | 15 min | 10 min | 1 h | 1 h |
TimeSteps | 17,420 | 17,420 | 69,680 | 69,680 | 52,696 | 17,544 | 26,304 |
Models | FFTNet | U-Mixer [43] (2024) | PathFormer [40] (2024) | PatchTST [20] (2023) | TimesNet [7] (2023) | NLinear [8] (2023) | MICN [6] (2023) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Metrics | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
ETTh1 | 96 | 0.362 | 0.392 | 0.370 | 0.390 | 0.382 | 0.400 | 0.394 | 0.408 | 0.384 | 0.402 | 0.386 | 0.392 | 0.421 | 0.431 |
192 | 0.383 | 0.405 | 0.423 | 0.421 | 0.440 | 0.427 | 0.446 | 0.438 | 0.436 | 0.429 | 0.440 | 0.430 | 0.474 | 0.487 | |
336 | 0.388 | 0.413 | 0.470 | 0.442 | 0.454 | 0.432 | 0.485 | 0.455 | 0.491 | 0.469 | 0.480 | 0.443 | 0.569 | 0.551 | |
720 | 0.447 | 0.454 | 0.500 | 0.473 | 0.479 | 0.461 | 0.495 | 0.474 | 0.521 | 0.500 | 0.486 | 0.472 | 0.77 | 0.672 | |
ETTh2 | 96 | 0.222 | 0.302 | 0.290 | 0.335 | 0.279 | 0.331 | 0.294 | 0.343 | 0.340 | 0.374 | 0.290 | 0.339 | 0.299 | 0.364 |
192 | 0.271 | 0.337 | 0.366 | 0.386 | 0.349 | 0.380 | 0.378 | 0.394 | 0.402 | 0.414 | 0.379 | 0.386 | 0.441 | 0.454 | |
336 | 0.313 | 0.370 | 0.423 | 0.428 | 0.348 | 0.382 | 0.382 | 0.410 | 0.452 | 0.452 | 0.411 | 0.407 | 0.654 | 0.567 | |
720 | 0.391 | 0.428 | 0.446 | 0.445 | 0.398 | 0.424 | 0.412 | 0.433 | 0.462 | 0.468 | 0.478 | 0.442 | 0.956 | 0.716 | |
ETTm1 | 96 | 0.292 | 0.338 | 0.317 | 0.349 | 0.316 | 0.346 | 0.324 | 0.361 | 0.338 | 0.375 | 0.339 | 0.369 | 0.316 | 0.362 |
192 | 0.330 | 0.360 | 0.369 | 0.376 | 0.366 | 0.370 | 0.362 | 0.383 | 0.374 | 0.387 | 0.379 | 0.386 | 0.363 | 0.39 | |
336 | 0.361 | 0.380 | 0.395 | 0.393 | 0.386 | 0.394 | 0.390 | 0.402 | 0.410 | 0.411 | 0.411 | 0.407 | 0.408 | 0.426 | |
720 | 0.422 | 0.411 | 0.443 | 0.424 | 0.460 | 0.432 | 0.461 | 0.438 | 0.478 | 0.450 | 0.478 | 0.442 | 0.481 | 0.476 | |
ETTm2 | 96 | 0.163 | 0.251 | 0.178 | 0.256 | 0.170 | 0.248 | 0.177 | 0.260 | 0.187 | 0.267 | 0.177 | 0.257 | 0.179 | 0.275 |
192 | 0.216 | 0.288 | 0.243 | 0.301 | 0.238 | 0.295 | 0.248 | 0.306 | 0.249 | 0.309 | 0.241 | 0.297 | 0.307 | 0.376 | |
336 | 0.259 | 0.319 | 0.331 | 0.355 | 0.293 | 0.331 | 0.304 | 0.342 | 0.321 | 0.351 | 0.302 | 0.337 | 0.325 | 0.388 | |
720 | 0.343 | 0.377 | 0.434 | 0.413 | 0.390 | 0.389 | 0.403 | 0.397 | 0.408 | 0.403 | 0.405 | 0.396 | 0.502 | 0.49 | |
Weather | 96 | 0.147 | 0.192 | 0.160 | 0.198 | 0.156 | 0.192 | 0.177 | 0.212 | 0.172 | 0.220 | 0.168 | 0.208 | 0.161 | 0.229 |
192 | 0.188 | 0.231 | 0.203 | 0.239 | 0.206 | 0.240 | 0.224 | 0.258 | 0.219 | 0.261 | 0.217 | 0.255 | 0.22 | 0.281 | |
336 | 0.217 | 0.262 | 0.252 | 0.276 | 0.254 | 0.282 | 0.277 | 0.297 | 0.280 | 0.306 | 0.267 | 0.292 | 0.278 | 0.331 | |
720 | 0.298 | 0.319 | 0.326 | 0.328 | 0.340 | 0.336 | 0.350 | 0.345 | 0.365 | 0.359 | 0.351 | 0.346 | 0.311 | 0.356 | |
Electricity | 96 | 0.130 | 0.221 | 0.151 | 0.240 | 0.145 | 0.236 | 0.180 | 0.264 | 0.168 | 0.272 | 0.185 | 0.266 | 0.164 | 0.269 |
192 | 0.147 | 0.238 | 0.163 | 0.250 | 0.167 | 0.256 | 0.188 | 0.275 | 0.184 | 0.289 | 0.189 | 0.276 | 0.177 | 0.285 | |
336 | 0.164 | 0.256 | 0.179 | 0.264 | 0.186 | 0.275 | 0.206 | 0.291 | 0.198 | 0.300 | 0.204 | 0.289 | 0.193 | 0.304 | |
720 | 0.203 | 0.290 | 0.210 | 0.294 | 0.231 | 0.309 | 0.247 | 0.328 | 0.220 | 0.320 | 0.245 | 0.319 | 0.212 | 0.321 | |
Traffic | 96 | 0.395 | 0.261 | 0.451 | 0.280 | 0.479 | 0.283 | 0.492 | 0.324 | 0.593 | 0.321 | 0.645 | 0.388 | 0.519 | 0.309 |
192 | 0.406 | 0.264 | 0.458 | 0.277 | 0.484 | 0.292 | 0.487 | 0.303 | 0.617 | 0.336 | 0.599 | 0.365 | 0.237 | 0.315 | |
336 | 0.419 | 0.270 | 0.477 | 0.278 | 0.503 | 0.299 | 0.505 | 0.317 | 0.629 | 0.336 | 0.606 | 0.367 | 0.534 | 0.313 | |
720 | 0.448 | 0.286 | 0.520 | 0.288 | 0.537 | 0.322 | 0.542 | 0.337 | 0.640 | 0.350 | 0.645 | 0.388 | 0.577 | 0.325 | |
avg | 0.297 | 0.318 | 0.341 | 0.336 | 0.337 | 0.334 | 0.351 | 0.350 | 0.376 | 0.362 | 0.372 | 0.356 | 0.395 | 0.395 | |
imp | 0.000 | 0.000 | 0.128 | 0.052 | 0.118 | 0.048 | 0.153 | 0.090 | 0.210 | 0.120 | 0.200 | 0.105 | 0.248 | 0.194 |
Metrics | Weather | ETTh1 | ETTh2 | ETTm1 | ETTm2 | |
---|---|---|---|---|---|---|
Full | MSE | 0.212 | 0.401 | 0.299 | 0.351 | 0.245 |
MAE | 0.251 | 0.424 | 0.359 | 0.372 | 0.309 | |
w/o LCCB | MSE | 0.228 | 0.402 | 0.297 | 0.356 | 0.246 |
MAE | 0.265 | 0.424 | 0.357 | 0.374 | 0.307 | |
w/o GCR | MSE | 0.212 | 0.418 | 0.301 | 0.354 | 0.248 |
MAE | 0.250 | 0.434 | 0.360 | 0.375 | 0.31 |
p8-s8 | p16-s8 | p16-s16 | p16-s32 | p32-s16 | p64-s32 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | |
ETTh1 | 0.399 | 0.421 | 0.401 | 0.424 | 0.409 | 0.431 | 0.4272 | 0.445 | 0.408 | 0.429 | 0.434 | 0.448 |
ETTh2 | 0.300 | 0.358 | 0.299 | 0.359 | 0.299 | 0.359 | 0.3014 | 0.360 | 0.303 | 0.362 | 0.314 | 0.370 |
ETTm1 | 0.352 | 0.372 | 0.351 | 0.372 | 0.352 | 0.373 | 0.3605 | 0.381 | 0.352 | 0.373 | 0.360 | 0.380 |
ETTm2 | 0.249 | 0.310 | 0.245 | 0.309 | 0.246 | 0.308 | 0.2473 | 0.310 | 0.247 | 0.309 | 0.250 | 0.312 |
Weather | 0.213 | 0.252 | 0.212 | 0.250 | 0.213 | 0.251 | 0.213 | 0.251 | 0.214 | 0.252 | 0.224 | 0.264 |
Model | Parameters | MACs | Training Time (s/epoch) |
---|---|---|---|
Informer [18] | 12.53 M | 3.97 G | 72.3 |
Autoformer [19] | 12.22 M | 4.41 G | 101.6 |
FEDformer [38] | 17.98 M | 4.41 G | 245.7 |
NLinear [8] | 70.0 K | 22.19 M | 18.7 |
PatchTST [20] | 10.74 M | 25.87 G | 104.1 |
iTransformer [45] | 5.15 M | 1.65 G | 39.5 |
FTTNet | 2.57 M | 852 M | 43.6 |
Metrics | ETTh1 | ETTh2 | ETTm1 | ETTm2 | Weather | |
---|---|---|---|---|---|---|
Original | MSE | 0.395 | 0.299 | 0.351 | 0.245 | 0.213 |
MAE | 0.416 | 0.359 | 0.372 | 0.309 | 0.251 | |
Gaussian | MSE | 0.397 | 0.300 | 0.354 | 0.250 | 0.216 |
MAE | 0.418 | 0.362 | 0.378 | 0.317 | 0.258 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Yin, M.; Liao, J.; Xie, F.; Zheng, P.; Li, J.; Hua, B. FFTNet: Fusing Frequency and Temporal Awareness in Long-Term Time Series Forecasting. Electronics 2025, 14, 1303. https://doi.org/10.3390/electronics14071303
Yang Z, Yin M, Liao J, Xie F, Zheng P, Li J, Hua B. FFTNet: Fusing Frequency and Temporal Awareness in Long-Term Time Series Forecasting. Electronics. 2025; 14(7):1303. https://doi.org/10.3390/electronics14071303
Chicago/Turabian StyleYang, Zhiqiang, Mengxiao Yin, Junjie Liao, Fancui Xie, Peizhao Zheng, Jiachao Li, and Bei Hua. 2025. "FFTNet: Fusing Frequency and Temporal Awareness in Long-Term Time Series Forecasting" Electronics 14, no. 7: 1303. https://doi.org/10.3390/electronics14071303
APA StyleYang, Z., Yin, M., Liao, J., Xie, F., Zheng, P., Li, J., & Hua, B. (2025). FFTNet: Fusing Frequency and Temporal Awareness in Long-Term Time Series Forecasting. Electronics, 14(7), 1303. https://doi.org/10.3390/electronics14071303