An Adaptive Cycle-GAN-Based Augmented LIME-Enabled Multi-Stage Transfer Learning Model for Improving Breast Tumor Detection Using Ultrasound Images
Abstract
:1. Introduction
- We have considered an adaptive cycle-GAN to eliminate unwanted distortion from BUS images.
- We consider an ensemble of multi-stage transfer learning models such as DenseNet 121, Inception-V3, and XceptionLike for classifying breast tumor images.
- Furthermore, we present an automated boundary extraction using Local Interpretable Model-agnostic Explanations (LIME) which highlights the boundary extraction of breast lesions from BUS images and provides the interpretable explanations on the predictions of the proposed multi-stage transfer learning model.
- During experimentation, the proposed model’s efficacy has been assessed and compared with other existing approaches.
2. Related Work
3. LIME-Assisted Ensemble-Based Multi-Stage Deep Transfer Learning Model
3.1. Cycle GAN
Algorithm 1 Training the cycle-GAN algorithm |
|
3.2. Ensemble-Based Multi-Stage Deep Transfer Learning Model
Algorithm 2 Ensemble-based multi-stage deep transfer learning model (EMDTL) algorithm |
|
Algorithm 3 Cycle-GAN with LIME-assisted ensemble-based multi-stage deep transfer learning model (C-LEMDTL) algorithm |
|
3.3. LIME for an Improved Interpretability from BUS Images
4. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 524–541. [Google Scholar]
- Al-Dhabyani, W.; Gomaa, M.; Khaled, H.; Fahmy, A. Dataset of breast ultrasound images. Data Brief 2020, 28, 104863. [Google Scholar] [PubMed]
- Hekal, A.A.; Elnakib, A.; Moustafa, H.E.D. Automated early breast cancer detection and classification system. Signal Image Video Process. 2021, 15, 1497–1505. [Google Scholar]
- Rezaei, Z. A review on image-based approaches for breast cancer detection, segmentation, and classification. Expert Syst. Appl. 2021, 182, 115204. [Google Scholar]
- Ilesanmi, A.E.; Chaumrattanakul, U.; Makhanov, S.S. Methods for the segmentation and classification of breast ultrasound images: A review. J. Ultrasound. 2021, 24, 367–382. [Google Scholar]
- Feng, J.; Dong, X.; Liu, X.; Zheng, X. HTBE-Net: A hybrid transformer network based on boundary enhancement for breast ultrasound image segmentation. Displays 2024, 84, 102753. [Google Scholar]
- Desai, S.D.; Giraddi, S.; Verma, N.; Gupta, P.; Ramya, S. Breast cancer detection using gan for limited labeled dataset. In Proceedings of the 2020 12th International Conference on Computational Intelligence and Communication Networks (CICN), Bhimtal, India, 25–26 September 2020; pp. 34–39. [Google Scholar]
- Han, L.; Huang, Y.; Dou, H.; Wang, S.; Ahamad, S.; Luo, H.; Liu, Q.; Fan, J.; Zhang, J. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network. Comput. Methods Programs Biomed. 2020, 189, 105275. [Google Scholar]
- Kaur, P.; Singh, G.; Kaur, P. A review of denoising medical images using machine learning approaches. Curr. Med. Imaging 2018, 14, 675–685. [Google Scholar]
- Ho, D.J.; Yarlagadda, D.V.; D’Alfonso, T.M.; Hanna, M.G.; Grabenstetter, A.; Ntiamoah, P.; Brogi, E.; Tan, L.K.; Fuchs, T.J. Deep multi-magnification networks for multi-class breast cancer image segmentation. Comput. Med. Imaging Graph. 2021, 88, 101866. [Google Scholar]
- Mohi ud din, N.; Dar, R.A.; Rasool, M.; Assad, A. Breast cancer detection using deep learning: Datasets, methods, and challenges ahead. Comput. Biol. Med. 2022, 149, 106073. [Google Scholar]
- Khan, S.; Islam, N.; Jan, Z.; Din, I.U.; Rodrigues, J.J.C. A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recognit. Lett. 2019, 125, 1–6. [Google Scholar] [CrossRef]
- Gupta, K.; Chawla, N. Analysis of histopathological images for prediction of breast cancer using traditional classifiers with pre-trained CNN. Procedia Comput. Sci. 2020, 167, 878–889. [Google Scholar] [CrossRef]
- Masud, M.; Hossain, M.S.; Alhumyani, H.; Alshamrani, S.S.; Cheikhrouhou, O.; Ibrahim, S.; Muhammad, G.; Rashed, A.E.E.; Gupta, B. Pre-trained convolutional neural networks for breast cancer detection using ultrasound images. ACM Trans. Internet Technol. (TOIT) 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Xue, Y.; Xu, T.; Zhang, H.; Long, L.R.; Huang, X. Segan: Adversarial network with multi-scale l 1 loss for medical image segmentation. Neuroinformatics 2018, 16, 383–392. [Google Scholar] [CrossRef]
- Dai, W.; Dong, N.; Wang, Z.; Liang, X.; Zhang, H.; Xing, E.P. Scan: Structure correcting adversarial network for organ segmentation in chest x-rays. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Cham, Switzerland, 2018; pp. 263–273. [Google Scholar]
- Zhai, D.; Hu, B.; Gong, X.; Zou, H.; Luo, J. ASS-GAN: Asymmetric semi-supervised GAN for breast ultrasound image segmentation. Neurocomputing 2022, 493, 204–216. [Google Scholar] [CrossRef]
- Schlegl, T.; Seeböck, P.; Waldstein, S.M.; Schmidt-Erfurth, U.; Langs, G. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In Information Processing in Medical Imaging; Springer: Cham, Switzerland, 2017; pp. 146–157. [Google Scholar]
- Jiménez-Gaona, Y.; Carrión-Figueroa, D.; Lakshminarayanan, V.; Rodríguez-Álvarez, M.J. Gan-based data augmentation to improve breast ultrasound and mammography mass classification. Biomed. Signal Process. Control. 2024, 94, 106255. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, L.; Zhao, D.; Li, H. A generative adversarial network for image denoising. Multimed. Tools Appl. 2020, 79, 16517–16529. [Google Scholar] [CrossRef]
- Han, C.; Rundo, L.; Murao, K.; Noguchi, T.; Shimahara, Y.; Milacski, Z.Á.; Koshino, S.; Sala, E.; Nakayama, H.; Satoh, S. MADGAN: Unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction. BMC Bioinform. 2021, 22, 31. [Google Scholar] [CrossRef]
- Huang, R.; Lin, M.; Dou, H.; Lin, Z.; Ying, Q.; Jia, X.; Xu, W.; Mei, Z.; Yang, X.; Dong, Y.; et al. Boundary-rendering network for breast lesion segmentation in ultrasound images. Med. Image Anal. 2022, 80, 102478. [Google Scholar] [CrossRef]
- Zheng, J.; Lin, D.; Gao, Z.; Wang, S.; He, M.; Fan, J. Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis. IEEE Access 2020, 8, 96946–96954. [Google Scholar] [CrossRef]
- Yala, A.; Mikhael, P.G.; Lehman, C.; Lin, G.; Strand, F.; Wan, Y.L.; Hughes, K.; Satuluru, S.; Kim, T.; Banerjee, I.; et al. Optimizing risk-based breast cancer screening policies with reinforcement learning. Nat. Med. 2022, 28, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Ayana, G.; Dese, K.; Choe, S.w. Transfer learning in breast cancer diagnoses via ultrasound imaging. Cancers 2021, 13, 738. [Google Scholar] [CrossRef]
- Wang, Y.; Choi, E.J.; Choi, Y.; Zhang, H.; Jin, G.Y.; Ko, S.B. Breast cancer classification in automated breast ultrasound using multiview convolutional neural network with transfer learning. Ultrasound Med. Biol. 2020, 46, 1119–1132. [Google Scholar] [CrossRef]
- Yu, S.; Liu, L.; Wang, Z.; Dai, G.; Xie, Y. Transferring deep neural networks for the differentiation of mammographic breast lesions. Sci. China Technol. Sci. 2019, 62, 441–447. [Google Scholar] [CrossRef]
- Agarwal, R.; Diaz, O.; Lladó, X.; Yap, M.H.; Martí, R. Automatic mass detection in mammograms using deep convolutional neural networks. J. Med. Imaging 2019, 6, 031409. [Google Scholar] [CrossRef] [PubMed]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef]
- Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient graph-based image segmentation. Int. J. Comput. Vis. 2004, 59, 167–181. [Google Scholar] [CrossRef]
- Vedaldi, A.; Soatto, S. Quick shift and kernel methods for mode seeking. In Computer Vision–ECCV 2008: Proceedings of the 10th European Conference on Computer Vision, Marseille, France, 12–18 October 2008; Part IV 10; Springer: Singapore, 2008; pp. 705–718. [Google Scholar]
- Bharati, P.; Pramanik, A. Deep learning techniques—R-CNN to mask R-CNN: A survey. In Computational Intelligence in Pattern Recognition: Proceedings of CIPR 2019; Springer: Singapore, 2020; pp. 657–668. [Google Scholar]
- Abbas, Q. DeepCAD: A computer-aided diagnosis system for mammographic masses using deep invariant features. Computers 2016, 5, 28. [Google Scholar] [CrossRef]
- Charan, S.; Khan, M.J.; Khurshid, K. Breast cancer detection in mammograms using convolutional neural network. In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 3–4 March 2018; pp. 1–5. [Google Scholar]
- Ting, F.F.; Tan, Y.J.; Sim, K.S. Convolutional neural network improvement for breast cancer classification. Expert Syst. Appl. 2019, 120, 103–115. [Google Scholar] [CrossRef]
Model | Metrics | Benign | Malignant | Normal | Accuracy |
---|---|---|---|---|---|
XceptionLike | Precision | 0.90 | 0.86 | 0.83 | 0.88 |
Recall | 0.89 | 0.774 | 1.0 | 0.88 | |
f1-score | 0.90 | 0.8 | 0.91 | 0.88 | |
Inceptionv3 | Precision | 0.86 | 0.73 | 0.89 | 0.83 |
Recall | 0.89 | 0.71 | 0.850 | 0.84 | |
f1-score | 0.88 | 0.72 | 0.87 | 0.83 | |
Densenet121 | Precision | 0.88 | 0.86 | 0.89 | 0.88 |
Recall | 0.92 | 0.80 | 0.85 | 0.88 | |
f1-score | 0.90 | 0.83 | 0.87 | 0.88 | |
Resnet50 | Precision | 0.84 | 0.81 | 0.85 | 0.84 |
Recall | 0.89 | 0.70 | 0.85 | 0.84 | |
f1-score | 0.87 | 0.76 | 0.85 | 0.84 | |
MaxViT | Precision | 0.47 | 0.68 | 0.54 | 0.38 |
Recall | 0.85 | 0.75 | 0.54 | 0.53 | |
f1-score | 0.60 | 0.71 | 0.54 | 0.45 |
Model | Metrics | Benign | Malignant | Normal | Macro Average |
---|---|---|---|---|---|
XceptionLike | Precision | 0.806 | 0.762 | 0.794 | 0.779 |
Recall | 0.792 | 0.706 | 0.89 | 0.788 | |
Inceptionv3 | Precision | 0.782 | 0.757 | 0.7333 | 0.765 |
Recall | 0.771 | 0.602 | 0.750 | 0.759 | |
Densenet121 | Precision | 0.765 | 0.733 | 0.794 | 0.731 |
Recall | 0.792 | 0.609 | 0.750 | 0.717 | |
Resnet50 | Precision | 0.740 | 0.714 | 0.75 | 0.735 |
Recall | 0.792 | 0.609 | 0.75 | 0.717 | |
MaxViT | Precision | 0.472 | 0.681 | 0.542 | 0.384 |
Recall | 0.75 | 0.65 | 0.542 | 0.533 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sappa, N.; Lingam, G. An Adaptive Cycle-GAN-Based Augmented LIME-Enabled Multi-Stage Transfer Learning Model for Improving Breast Tumor Detection Using Ultrasound Images. Electronics 2025, 14, 1571. https://doi.org/10.3390/electronics14081571
Sappa N, Lingam G. An Adaptive Cycle-GAN-Based Augmented LIME-Enabled Multi-Stage Transfer Learning Model for Improving Breast Tumor Detection Using Ultrasound Images. Electronics. 2025; 14(8):1571. https://doi.org/10.3390/electronics14081571
Chicago/Turabian StyleSappa, Neeraja, and Greeshma Lingam. 2025. "An Adaptive Cycle-GAN-Based Augmented LIME-Enabled Multi-Stage Transfer Learning Model for Improving Breast Tumor Detection Using Ultrasound Images" Electronics 14, no. 8: 1571. https://doi.org/10.3390/electronics14081571
APA StyleSappa, N., & Lingam, G. (2025). An Adaptive Cycle-GAN-Based Augmented LIME-Enabled Multi-Stage Transfer Learning Model for Improving Breast Tumor Detection Using Ultrasound Images. Electronics, 14(8), 1571. https://doi.org/10.3390/electronics14081571