Cryogenic MMIC Low-Noise Amplifiers for Radio Telescope Applications
Abstract
:1. Introduction
2. Materials and Methods
Discrete Device Characterization
- All two-finger devices show well-behaved and smooth response in terms of transconductance () and drain-source resistance (), both at room and cryogenic temperature no matter how long the total widths are. However, for four-finger ones, devices that have total widths longer than 150 m show distorted response with the from 0.6 to 1.05 V at 15 K. Once the over 1.05 V, the I–V curves back to normal.
- Small size devices with short gate widths have slightly greater transconductance per unit width than those large devices. For instance, the 2f50 m transistor achieves peak transconductance over 800 mS/mm, whereas the 4f600 m transistor does not attain 800 mS/mm.
- When V, the drain current density at 15 K is smaller than those at RT, but when V, drain current is more significant at 15 K than at RT.
- The 4f100 m devices exhibit obvious kinks at cryogenic temperature, which is a sudden current increase with a small increase in the . The same phenomenon occurred on 4f200 m and 4f300 m devices. This leads to high drain conductance (), transconductance () compression, poor linearity, and lowered voltage gain [5].
- At RT, the drain current of small devices begins to level out under high drain bias, and large devices begin to slope down. However, all drain currents of devices at 15 K begin to slightly tilt up under high drain bias.
- The DC transconductance of the same devices is slightly enhanced after cooling down to cryogenic temperature and keeps level with drain current increases instead of tilting down.
3. Results
LNA Design and Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- McCulloch, M.A.; Grahn, J.; Melhuish, S.J.; Nilsson, P.A.; Piccirillo, L.; Schleeh, J.; Wadefalk, N. Dependence of Noise Temperature on Physical Temperature for Cryogenic Low-Noise Amplifiers. J. Astron. Telesc. Instruments Syst. 2017, 3, 014003. [Google Scholar] [CrossRef]
- Chiong, C.C.; Wang, Y.; Chang, K.C.; Wang, H. Low-Noise Amplifier for Next-Generation Radio Astronomy Telescopes: Review of the State-of-the-Art Cryogenic LNAs in the Most Challenging Applications. IEEE Microw. Mag. 2022, 23, 31–47. [Google Scholar] [CrossRef]
- Wang, N. Xinjiang Qitai 110 m Radio Telescope. Sci. Sin. Phys. Mech. Astron. 2014, 44, 783–794. [Google Scholar] [CrossRef]
- Wang, N.; Xu, Q.; Ma, J.; Liu, Z.; Liu, Q.; Zhang, H.; Pei, X.; Chen, M.; Manchester, R.N.; Lee, K.; et al. The Qitai Radio Telescope. Sci. China Phys. Mech. Astron. 2023, 66, 289512. [Google Scholar] [CrossRef]
- Shell, J. The Cryogenic DC Behavior of Cryo3/AZ1 InP 0.1-by-80-Micrometer-Gate High Electron Mobility Transistor Devices. IPN Prog. Rep. 2007, 42–169, 1–26. [Google Scholar]
- Caddemi, A.; Cardillo, E.; Patanè, S.; Triolo, C. Light Exposure Effects on the DC Kink of AlGaN/GaN HEMTs. Electronics 2019, 8, 698. [Google Scholar] [CrossRef]
- Caddemi, A.; Cardillo, E.; Patanè, S.; Triolo, C. An Accurate Experimental Investigation of an Optical Sensing Microwave Amplifier. IEEE Sens. J. 2018, 18, 9214–9221. [Google Scholar] [CrossRef]
- Varonen, M.; Reeves, R.; Kangaslahti, P.; Samoska, L.; Kooi, J.W.; Cleary, K.; Gawande, R.S.; Akgiray, A.; Fung, A.; Gaier, T.; et al. An MMIC Low-Noise Amplifier Design Technique. IEEE Trans. Microw. Theory Tech. 2016, 64, 826–835. [Google Scholar] [CrossRef]
- Varonen, M.; Reeves, R.; Kangaslahti, P.; Samoska, L.; Akgiray, A.; Cleary, K.; Gawande, R.; Fung, A.; Gaier, T.; Weinreb, S.; et al. A 75–116-GHz LNA with 23-K Noise Temperature at 108 GHz. In Proceedings of the 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2–7 June 2013; pp. 1–3. [Google Scholar] [CrossRef]
- Moschetti, G.; Thome, F.; Ohlrogge, M.; Goliasch, J.; Schäfer, F.; Aja, B.; Leuther, A.; Schlechtweg, M.; Seelmann-Eggebert, M.; Ambacher, O.; et al. Stability Investigation of Large Gate-Width Metamorphic High Electron-Mobility Transistors at Cryogenic Temperature. IEEE Trans. Microw. Theory Tech. 2016, 64, 3139–3150. [Google Scholar] [CrossRef]
- Rodilla, H.; Schleeh, J.; Nilsson, P.A.; Grahn, J. Cryogenic Kink Effect in InP pHEMTs: A Pulsed Measurements Study. IEEE Trans. Electron Devices 2015, 62, 532–537. [Google Scholar] [CrossRef]
- Yang, Q. Low Frequency Dispersion in InP HEMTs. Master’s Thesis, Chalmers University of Technology, Göteborg, Sweden, 2013. [Google Scholar]
- Keysight. Noise Figure Measurement Accuracy: The Y-Factor Method. 2021. Available online: https://www.keysight.com/us/en/assets/7018-06829/application-notes/5952-3706.pdf (accessed on 15 October 2024).
- Keysight. High-Accuracy Noise Figure Measurements with Network Analyzers. 2020. Available online: https://www.keysight.com/us/en/assets/7018-02539/application-notes/5990-5800.pdf (accessed on 15 October 2024).
- Fernandez, J.E. A Noise-Temperature Measurement System Using a Cryogenic Attenuator. TMO Prog. Rep. 1998, 15, 42–135. [Google Scholar]
- Sheldon, A.; Belostotski, L.; Mani, H.; Groppi, C.E.; Warnick, K.F. Cryogenic Noise-Parameter Measurements: Recent Research and a Fully Automated Measurement Application. IEEE Microw. Mag. 2021, 22, 52–64. [Google Scholar] [CrossRef]
- Heinz, F.; Thome, F.; Leuther, A.; Ambacher, O. A Cryogenic On-Chip Noise Measurement Procedure With ±1.4-K Measurement Uncertainty. In Proceedings of the 2022 IEEE/MTT-S International Microwave Symposium-IMS, Denver, CO, USA, 19–24 June 2022; pp. 233–236. [Google Scholar] [CrossRef]
- Friis, H. Noise Figures of Radio Receivers. Proc. IRE 1944, 32, 419–422. [Google Scholar] [CrossRef]
- Shiramizu, N.; Masuda, T.; Tanabe, M.; Washio, K. A 3–10 GHz Bandwidth Low-Noise and Low-Power Amplifier for Full-Band UWB Communications in 0.25-/Spl Mu/m SiGe BiCMOS Technology. In Proceedings of the 2005 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium-Digest of Papers, Long Beach, CA, USA, 12–14 June 2005; pp. 39–42. [Google Scholar] [CrossRef]
- Akgiray, A.H.; Weinreb, S.; Leblanc, R.; Renvoise, M.; Frijlink, P.; Lai, R.; Sarkozy, S. Noise Measurements of Discrete HEMT Transistors and Application to Wideband Very Low-Noise Amplifiers. IEEE Trans. Microw. Theory Tech. 2013, 61, 3285–3297. [Google Scholar] [CrossRef]
- Heinz, F.; Thome, F.; Leuther, A.; Ambacher, O. A 50-Nm Gate-Length Metamorphic HEMT Technology Optimized for Cryogenic Ultra-Low-Noise Operation. IEEE Trans. Microw. Theory Tech. 2021, 69, 3896–3907. [Google Scholar] [CrossRef]
- Wong, W.T.; Coskun, A.H.; Bardin, J.C. Design and Characterization of a Wideband High-Dynamic Range SiGe Cryogenic Low Noise Amplifier. In Proceedings of the 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, USA, 4–9 June 2017; pp. 1972–1975. [Google Scholar] [CrossRef]
- Low Noise Factory AB, L.N.F.A. LNF-LNC0.3_14B. 2023. Available online: https://lownoisefactory.com/product/lnf-lnc0-3_14b/ (accessed on 6 April 2025).
- Bardin, J.C.; Weinreb, S. A 0.1–5 GHz Cryogenic SiGe MMIC LNA. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 407–409. [Google Scholar] [CrossRef]
- Peng, Y.; Zhong, Y.; Guo, Z.; Liu, S.; Yu, D. A 3.5 7.5 GHz GaAs HEMT Cryogenic Low-NoiseAmplifier Achieving 5 Kelvin Noise Temperature for Qubits Measurement. In Proceedings of the 2023 IEEE/MTT-S International Microwave Symposium-IMS, San Diego, CA, USA, 11–16 June 2023; pp. 672–675. [Google Scholar] [CrossRef]
- Wang, Y.; Chiong, C.C.; Nai, J.K.; Wang, H. A High Gain Broadband LNA in GaAs 015-Mm pHEMT Process Using Inductive Feedback Gain Compensation for Radio Astronomy Applications. In Proceedings of the 2015 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Sendai, Japan, 26–28 August 2015; pp. 79–81. [Google Scholar] [CrossRef]
- Chen, P.S.; Kim, D.H.; Bergman, J.; Hacker, J.; Brar, B. Wideband Low-Noise-Amplifier (LNA) with Lg = 50 Nm InGaAs pHEMT and Wideband RF Chokes. In Proceedings of the 2011 IEEE MTT-S International Microwave Symposium, Baltimore, MD, USA, 5–10 June 2011; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, H.; Qian, G.; Zhong, W.; Liu, C. A 3–15 GHz Ultra-Wideband 0.15-Mm pHEMT Low Noise Amplifier Design. In Proceedings of the 2016 IEEE International Conference on Communication Systems (ICCS), Shenzhen, China, 14–16 December 2016; pp. 1–4. [Google Scholar] [CrossRef]
- Lei, H.W.; Wang, Y.; Chiong, C.C.; Wang, H. A 2.5–31-GHz High Gain LNA in 0.15-Mm GaAs pHEMT for Radio Astronomical Application. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 228–230. [Google Scholar] [CrossRef]
Ref. | Technology | Freq. (GHz) | Gain (dB) | Noise Temp. (K) | FoM | |
---|---|---|---|---|---|---|
[20] | OMMIC GaAs 70 nm mHEMT | 0.7–16 | 24 | 10 @20 K | 16 @20 K | 480 |
[20] | NGC InP 35 nm pHEMT | 1–20 | 22–25 | 10 @22 K | 30 @22 K | 312 |
[21] | GaAs 50 nm mHEMT | 8–18 | 39.4 | 3.3–5.6 @10 K | 24.4 @10 K | 8021 |
[22] | 120 nm BiCMOS | 1–20 | 23–27 | 9–30 @17 K | 60 @17 K | 85 |
[23] | module | 0.3–14 | 37 | 3.6 @5 K | 19.2 @5 K | 4967 |
[24] | IBM SiGe 130 nm BiCMOS | 0.1–5 | 29.6 | 4.3 @15 K | 20 @15 K | 779 |
[25] | discrete GaAs HEMT | 3.5–7.5 | >30 | <12 @3.6 K | 19 @3.6 K | 63 |
[26] | 150 nm GaAs pHEMT | 3.2–14.7 | 34 | 101@RT † | 45 @RT | 1839 |
[27] | 50 nm InP pHEMT | 4–24 | 17 | 84 @RT | 20 @RT | 174 |
[28] | 150 nm GaAs pHEMT | 3–15 | 28 | 226 @RT | 200 @RT | 49 |
[29] | 150 nm GaAs pHEMT | 2.5–31 | 32.7 | 129 @RT | 60 @RT | 1985 |
This work | WIN 180 nm GaAs pHEMT | 0.3–15 | 26 | 5–10 @15 K | 30 @15 K | 980 |
This work | WIN 180 nm GaAs pHEMT | 0.3–7 | 30 | 15–20 @15 K | 40 @15 K | 233 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Chen, M. Cryogenic MMIC Low-Noise Amplifiers for Radio Telescope Applications. Electronics 2025, 14, 1572. https://doi.org/10.3390/electronics14081572
Wang H, Chen M. Cryogenic MMIC Low-Noise Amplifiers for Radio Telescope Applications. Electronics. 2025; 14(8):1572. https://doi.org/10.3390/electronics14081572
Chicago/Turabian StyleWang, Haohui, and Maozheng Chen. 2025. "Cryogenic MMIC Low-Noise Amplifiers for Radio Telescope Applications" Electronics 14, no. 8: 1572. https://doi.org/10.3390/electronics14081572
APA StyleWang, H., & Chen, M. (2025). Cryogenic MMIC Low-Noise Amplifiers for Radio Telescope Applications. Electronics, 14(8), 1572. https://doi.org/10.3390/electronics14081572