Intelligent Frozen Gait Monitoring Using Software-Defined Radio Frequency Sensing
Abstract
:1. Introduction
- The design and implementation of an intelligent gait monitoring system that utilizes RF sensing and SDR technology to detect and provide real-time monitoring of FG episodes.
- Multiple experiments are conducted by analyzing five distinct gait activities related to FG, including walking, start-stop movements, and turning datasets, to evaluate the performance of the proposed system.
- ASP is deployed to analyze WCSI by extracting relevant gait factors and accurately recognizing FG patterns using AI techniques.
- The classification performance of trained machine and deep learning models is evaluated for the comprehensive assessment of a framework to benchmark model effectiveness and reliability.
2. Related Works
2.1. Contact-Based Monitoring of FG
2.2. Non-Contact-Based Monitoring of FG
3. System Design
4. Methodology
4.1. Data Collection
4.2. Data Pre-Processing
4.3. Classification
4.4. Performance Evaluation
5. Results and Discussion
5.1. Experimental Results
5.2. Classification Results
5.3. Performance Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bennett, D.A.; Beckett, L.A.; Murray, A.M.; Shannon, K.M.; Goetz, C.G.; Pilgrim, D.M.; Evans, D.A. Prevalence of parkinsonian signs and associated mortality in a community population of older people. N. Engl. J. Med. 1996, 334, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Mughal, H.; Javed, A.R.; Rizwan, M.; Almadhor, A.S.; Kryvinska, N. Parkinson’s disease management via wearable sensors: A systematic review. IEEE Access 2022, 10, 35219–35237. [Google Scholar] [CrossRef]
- Demrozi, F.; Bacchin, R.; Tamburin, S.; Cristani, M.; Pravadelli, G. Toward a wearable system for predicting freezing of gait in people affected by Parkinson’s disease. IEEE J. Biomed. Health Inform. 2019, 24, 2444–2451. [Google Scholar] [CrossRef] [PubMed]
- Macht, M.; Kaussner, Y.; Möller, J.C.; Stiasny-Kolster, K.; Eggert, K.M.; Krüger, H.P.; Ellgring, H. Predictors of freezing in Parkinson’s disease: A survey of 6620 patients. Mov. Disord. 2007, 22, 953–956. [Google Scholar] [CrossRef]
- Lopez, I.C.; Ruiz, P.J.; Del Pozo, S.V.; Bernardos, V.S. Motor complications in Parkinson’s disease: A 10 year follow-up study. Mov. Disord. 2010, 25, 2735–2739. [Google Scholar] [CrossRef]
- Liu, T.; Ye, X.; Sun, B. Combining convolutional neural network and support vector machine for gait-based gender recognition. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 3477–3481. [Google Scholar]
- Schaafsma, J.D.; Balash, Y.; Gurevich, T.; Bartels, A.L.; Hausdorff, J.M.; Giladi, N. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur. J. Neurol. 2003, 10, 391–398. [Google Scholar] [CrossRef]
- Giladi, N.; McDermott, M.P.; Fahn, S.; Przedborski, S.; Jankovic, J.; Stern, M.; Parkinson Study Group. Freezing of gait in PD: Prospective assessment in the DATATOP cohort. Neurology 2001, 56, 1712–1721. [Google Scholar] [CrossRef]
- Latt, M.D.; Lord, S.R.; Morris, J.G.; Fung, V.S. Clinical and physiological assessments for elucidating falls risk in Parkinson’s disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2009, 24, 1280–1289. [Google Scholar] [CrossRef]
- Okuma, Y. Freezing of gait and falls in Parkinson’s disease. J. Park. Dis. 2014, 4, 255–260. [Google Scholar] [CrossRef]
- Bachlin, M.; Plotnik, M.; Roggen, D.; Maidan, I.; Hausdorff, J.M.; Giladi, N.; Troster, G. Wearable assistant for Parkinson’s disease patients with the freezing of gait symptom. IEEE Trans. Inf. Technol. Biomed. 2009, 14, 436–446. [Google Scholar] [CrossRef]
- Kwon, Y.; Park, S.H.; Kim, J.W.; Ho, Y.; Jeon, H.M.; Bang, M.J.; Jung, G.-I.; Lee, S.-M.; Eom, G.-M.; Koh, S.-B.; et al. A practical method for the detection of freezing of gait in patients with Parkinson’s disease. Clin. Interv. Aging 2014, 9, 1709–1719. [Google Scholar] [PubMed]
- Tahafchi, P.; Judy, J.W. Freezing-of-gait detection using wearable-sensor technology and neural-network classifier. In Proceedings of the 2019 IEEE Sensors, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar]
- Shah, S.A.; Tahir, A.; Ahmad, J.; Zahid, A.; Pervaiz, H.; Shah, S.Y.; Abbasi, Q.H. Sensor fusion for identification of freezing of gait episodes using Wi-Fi and radar imaging. IEEE Sens. J. 2020, 20, 14410–14422. [Google Scholar] [CrossRef]
- Yang, X.; Shah, S.A.; Ren, A.; Zhao, N.; Zhang, Z.; Fan, D.; Ur-Rehman, M. Freezing of gait detection considering leaky wave cable. IEEE Trans. Antennas Propag. 2018, 67, 554–561. [Google Scholar] [CrossRef]
- Li, B.; Sun, Y.; Yang, X.; Yao, Z.; Zhou, X.; Ma, Z.; Wang, P. Research on wearable monitoring system for freezing of gait in Parkinson’s disease. In Proceedings of the 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Xi’an, China, 15–17 October 2021; Volume 5, pp. 920–924. [Google Scholar]
- Hutabarat, Y.; Owaki, D.; Hayashibe, M. Recent advances in quantitative gait analysis using wearable sensors: A review. IEEE Sens. J. 2021, 21, 26470–26487. [Google Scholar] [CrossRef]
- Saeed, U.; Shah, S.A.; Khan, M.Z.; Alotaibi, A.A.; Althobaiti, T.; Ramzan, N.; Abbasi, Q.H. Software-defined radio-based contactless localization for diverse human activity recognition. IEEE Sens. J. 2023, 23, 12041–12048. [Google Scholar] [CrossRef]
- Khan, M.B.; AbuAli, N.; Hayajneh, M.; Ullah, F.; Rehman, M.U.; Chong, K.T. Software defined radio frequency sensing framework for intelligent monitoring of sleep apnea syndrome. Methods 2023, 218, 14–24. [Google Scholar] [CrossRef]
- Khan, M.B.; Yang, X.; Ren, A.; Al-Hababi, M.A.M.; Zhao, N.; Guan, L.; Shah, S.A. Design of software defined radios based platform for activity recognition. IEEE Access 2019, 7, 31083–31088. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Chen, Y.; Wang, Y.; Wang, C. Wireless sensing for human activity: A survey. IEEE Commun. Surv. Tutor. 2019, 22, 1629–1645. [Google Scholar] [CrossRef]
- Bansal, S.K.; Basumatary, B.; Bansal, R.; Sahani, A.K. Techniques for the detection and management of freezing of gait in Parkinson’s disease—A systematic review and future perspectives. MethodsX 2023, 10, 102106. [Google Scholar] [CrossRef]
- Diep, C.; O’Day, J.; Kehnemouyi, Y.; Burnett, G.; Bronte-Stewart, H. Gait parameters measured from wearable sensors reliably detect freezing of gait in a stepping in place task. Sensors 2021, 21, 2661. [Google Scholar] [CrossRef]
- Hu, K.; Wang, Z.; Martens, K.E.; Lewis, S. Vision-based freezing of gait detection with anatomic patch based representation. In Computer Vision–ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia, 2–6 December 2018, Revised Selected Papers, Part I; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; Volume 14, pp. 564–576. [Google Scholar]
- Zhang, W.; Sun, H.; Huang, D.; Zhang, Z.; Li, J.; Wu, C.; Chan, P. Detection and prediction of freezing of gait with wearable sensors in Parkinson’s disease. Neurol. Sci. 2024, 45, 431–453. [Google Scholar] [CrossRef] [PubMed]
- Pardoel, S.; Shalin, G.; Nantel, J.; Lemaire, E.D.; Kofman, J. Early detection of freezing of gait during walking using inertial measurement unit and plantar pressure distribution data. Sensors 2021, 21, 2246. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.; Tay, A.; Au, W.L.; Tan, D.M.; Chia, N.S.; Yen, S.C. Detection of freezing of gait using convolutional neural networks and data from lower limb motion sensors. IEEE Trans. Biomed. Eng. 2022, 69, 2256–2267. [Google Scholar] [CrossRef] [PubMed]
- Bikias, T.; Iakovakis, D.; Hadjidimitriou, S.; Charisis, V.; Hadjileontiadis, L.J. DeepFoG: An IMU-based detection of freezing of gait episodes in Parkinson’s disease patients via deep learning. Front. Robot. AI 2021, 8, 537384. [Google Scholar] [CrossRef]
- O’Day, J.; Lee, M.; Seagers, K.; Hoffman, S.; Jih-Schiff, A.; Kidziński, Ł.; Bronte-Stewart, H. Assessing inertial measurement unit locations for freezing of gait detection and patient preference. J. NeuroEng. Rehabil. 2022, 19, 20. [Google Scholar] [CrossRef]
- Patil, K.S.; George, S.M.; Naik, K.G.; Chethana, P.; Kamath, N.V. Freeze of Gait and Fall Detection in Parkinson’s Patients. In Proceedings of the 2022 4th International Conference on Circuits, Control, Communication and Computing (I4C), Bangalore, India, 21–23 December 2022; pp. 245–249. [Google Scholar]
- Asodu, A.T.; Dabbu, S.; Riaz, H.; Kona, D.R.; Shireen, T. Footwear-Based GAIT Analysis: A New Frontier in Parkinson’s Disease Research. In Proceedings of the 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kamand, India, 24–28 June 2024; pp. 1–6. [Google Scholar]
- Singh, R.E.; Iqbal, K.; White, G.; Holtz, J.K. A review of EMG techniques for detection of gait disorders. In Artificial Intelligence-Applications in Medicine and Biology; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 19–40. [Google Scholar]
- Moore, A.; Li, J.; Contag, C.H.; Currano, L.J.; Pyles, C.O.; Hinkle, D.A.; Patil, V.S. Wearable surface electromyography system to predict freeze of gait in Parkinson’s disease patients. Sensors 2024, 24, 7853. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, W.; Yao, Y.; Ahmed, J.B.; Tan, Y.; Gu, D. Prediction of freezing of gait in patients with Parkinson’s disease by identifying impaired gait patterns. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 591–600. [Google Scholar] [CrossRef]
- Ren, K.; Chen, Z.; Ling, Y.; Zhao, J. Recognition of freezing of gait in Parkinson’s disease based on combined wearable sensors. BMC Neurol. 2022, 22, 229. [Google Scholar] [CrossRef]
- Patel, S.; Lorincz, K.; Hughes, R.; Huggins, N.; Growdon, J.; Standaert, D.; Akay, M.; Dy, J.; Welsh, M.; Bonato, P. Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 2009, 13, 864–873. [Google Scholar] [CrossRef]
- Anbalagan, E.; Anbhazhagan, S.M. Deep learning model using ensemble-based approach for walking activity recognition and gait event prediction with grey level co-occurrence matrix. Expert Syst. Appl. 2023, 227, 120337. [Google Scholar] [CrossRef]
- Tahafchi, P.; Molina, R.; Roper, J.A.; Sowalsky, K.; Hass, C.J.; Gunduz, A.; Judy, J.W. Freezing-of-Gait detection using temporal, spatial, and physiological features with a support-vector-machine classifier. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Republic of Korea, 11–15 July 2017; pp. 2867–2870. [Google Scholar]
- Mostafa, T.A.; Soltaninejad, S.; McIsaac, T.L.; Cheng, I. A comparative study of time frequency representation techniques for freeze of gait detection and prediction. Sensors 2021, 21, 6446. [Google Scholar] [CrossRef] [PubMed]
- Kondo, Y.; Bando, K.; Suzuki, I.; Miyazaki, Y.; Nishida, D.; Hara, T.; Kadone, H.; Suzuki, K. Video-based Detection of Freezing of Gait in Daily Clinical Practice in Patients with Parkinsonism. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 2250–2260. [Google Scholar] [CrossRef] [PubMed]
- Filtjens, B.; Nieuwboer, A.; D’cruz, N.; Spildooren, J.; Slaets, P.; Vanrumste, B. A data-driven approach for detecting gait events during turning in people with Parkinson’s disease and freezing of gait. Gait Posture 2020, 80, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Chen, X.; Zhang, J.; Lu, J.; Zhang, C.; Bai, H.; Zou, H. Recognition of freezing of gait in Parkinson’s disease based on machine vision. Front. Aging Neurosci. 2022, 14, 921081. [Google Scholar] [CrossRef]
- Abedi, H.; Ansariyan, A.; Morita, P.P.; Wong, A.; Boger, J.; Shaker, G. AI-powered noncontact in-home gait monitoring and activity recognition system based on mm-wave FMCW radar and cloud computing. IEEE Internet Things J. 2023, 10, 9465–9481. [Google Scholar] [CrossRef]
- Abdu, F.J.; Zhang, Y.; Deng, Z. Activity classification based on feature fusion of FMCW radar human motion micro-Doppler signatures. IEEE Sens. J. 2022, 22, 8648–8662. [Google Scholar] [CrossRef]
- Hu, K.; Wang, Z.; Martens, K.A.E.; Hagenbuchner, M.; Bennamoun, M.; Tsoi, A.C.; Lewis, S.J. Graph fusion network-based multimodal learning for freezing of gait detection. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 1588–1600. [Google Scholar] [CrossRef]
- Martelli, D.; Rahman, M.M.; Gurbuz, S.Z. Validation of a micro-doppler radar for measuring gait modifications during multidirectional visual perturbations. Gait Posture 2024, 113, 504–511. [Google Scholar] [CrossRef]
- Habib, Z.; Mughal, M.A.; Khan, M.A.; Shabaz, M. WiFOG: Integrating deep learning and hybrid feature selection for accurate freezing of gait detection. Alex. Eng. J. 2024, 86, 481–493. [Google Scholar] [CrossRef]
- Niazmand, K.; Tonn, K.; Zhao, Y.; Fietzek, U.M.; Schroeteler, F.; Ziegler, K.; Lueth, T.C. Freezing of gait detection in Parkinson’s disease using accelerometer based smart clothes. In Proceedings of the 2011 IEEE Biomedical Circuits and Systems Conference (BioCAS), San Diego, CA, USA, 10–12 November 2011; pp. 201–204. [Google Scholar]
- Pardoel, S.; Kofman, J.; Nantel, J.; Lemaire, E.D. Wearable-sensor-based detection and prediction of freezing of gait in Parkinson’s disease: A review. Sensors 2019, 19, 5141. [Google Scholar] [CrossRef]
- Klavestad, S.; Assres, G.; Fagernes, S.; Grønli, T.M. Monitoring activities of daily living using UWB radar technology: A contactless approach. IoT 2020, 1, 320–336. [Google Scholar] [CrossRef]
- Rehman, M.; Shah, R.A.; Khan, M.B.; Ali, N.A.A.; Alotaibi, A.A.; Althobaiti, T.; Abbasi, Q.H. Contactless small-scale movement monitoring system using software defined radio for early diagnosis of COVID-19. IEEE Sens. J. 2021, 21, 17180–17188. [Google Scholar] [CrossRef] [PubMed]
- Bilén, S.G.; Wyglinski, A.M.; Anderson, C.R.; Cooklev, T.; Dietrich, C.; Farhang-Boroujeny, B.; Reed, J.H. Software-defined radio: A new paradigm for integrated curriculum delivery. IEEE Commun. Mag. 2014, 52, 184–193. [Google Scholar] [CrossRef]
- AbuAli, N.; Khan, M.B.; Hayajneh, M.; Rehman, M. Exploiting wireless communication using software-defined radio frequency sensing for e-health applications. IEEE Commun. Stand. Mag. 2023, 7, 42–48. [Google Scholar] [CrossRef]
- Yang, P.K.; Filtjens, B.; Ginis, P.; Goris, M.; Nieuwboer, A.; Gilat, M.; Vanrumste, B. Automatic detection and assessment of freezing of gait manifestations. IEEE Trans. Neural Syst. Rehabil. Eng. 2024, 32, 2699–2708. [Google Scholar] [CrossRef]
- Rehman, M.; Shah, R.A.; Khan, M.B.; AbuAli, N.A.; Shah, S.A.; Yang, X.; Alomainy, A.; Imran, M.A.; Abbasi, Q.H. RF sensing-based breathing patterns detection leveraging USRP devices. Sensors 2021, 21, 3855. [Google Scholar] [CrossRef]
- Daud, A.; Khan, M.B.; Khattak, A.B.; Tanoli, S.A.K.; Mustafa, A.; Rehman, M.; López, O.L. Next-Generation Security: Detecting Suspicious Liquids Through Software Defined Radio Frequency Sensing and Machine Learning. IEEE Sens. J. 2024, 24, 7140–7152. [Google Scholar] [CrossRef]
- Rehman, M.; Shah, R.A.; Ali, N.A.A.; Khan, M.B.; Shah, S.A.; Alomainy, A.; Abbasi, Q.H. Enhancing system performance through objective feature scoring of multiple persons’ breathing using non-contact RF approach. Sensors 2023, 23, 1251. [Google Scholar] [CrossRef]
- AbuAli, N.; Khan, M.B.; Ullah, F.; Hayajneh, M.; Ullah, H.; Mumtaz, S. Software defined radio frequency sensing framework for Internet of Medical Things. Inf. Fusion 2024, 103, 102106. [Google Scholar] [CrossRef]
No. | Information/Parameters | Quantity/Setting |
---|---|---|
1 | USRP devices | 2 |
2 | Directional antennas | 2 |
3 | Computers | 2 |
4 | Operating frequency | 1.2 GHz |
5 | IQ rate (S/s) | 400 k samples/s |
6 | Transmitter gain | 12 dB |
7 | Receiver gain | 20 dB |
8 | Outgoing size | 1600 OFDM samples |
9 | Sub-carriers | 256 |
10 | Pre-processed sub-carriers | 146 |
11 | Cyclic prefix | 64 |
12 | Samples per frame | 320 |
13 | No. of activities | 6 |
14 | Activity time | 15 s |
15 | Repetition of activity | 10 |
16 | Total number of experiments | 600 |
17 | Sampling rate | 250 samples/s |
18 | Each activity record (15 s) | 3750 |
No. | Gender | Height (ft) | Body Mass (kg) | Body Structure |
---|---|---|---|---|
1 | Male | 5.11 | 60 | Ectomorph |
2 | Male | 5.10 | 67 | Mesomorph |
3 | Male | 5.6 | 56 | Ectomorph |
4 | Male | 5.7 | 80 | Mesomorph |
5 | Male | 5.7 | 60 | Ectomorph |
6 | Male | 5.9 | 65 | Mesomorph |
7 | Male | 6 | 68 | Mesomorph |
8 | Female | 5.6 | 72 | Mesomorph |
9 | Female | 5.3 | 60 | Mesomorph |
10 | Female | 5.3 | 46 | Ectomorph |
No. | Hyperparameter | Value |
---|---|---|
1 | Learning rate | 0.0001 |
2 | No. of Layers | 1 |
3 | No. of Hidden Layers | 16, 32, 64 |
4 | Epochs | 50 |
5 | Batch Size | 128 |
6 | Activation function | Softmax |
7 | Optimizer | Adam |
ML Model | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (0–1) |
---|---|---|---|---|
Ensemble | 99.3 | 99.5 | 99.3 | 0.993 |
Random Forest | 99.4 | 99.8 | 99.5 | 0.993 |
KNN | 98.4 | 98.3 | 98.5 | 0.985 |
SVM | 86.2 | 86.5 | 86.1 | 0.861 |
DL Model | Accuracy (%) | Precision (%) | Recall (%) | F1 Score (0–1) |
---|---|---|---|---|
GRU | 99.7 | 100 | 100 | 1.0 |
Bi-GRU | 99.1 | 99.0 | 99.1 | 0.991 |
LSTM | 98.9 | 98.8 | 98.8 | 0.985 |
RNN | 97.6 | 97.6 | 97.5 | 0.976 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.B.; Baig, H.; Hayat, R.; Tanoli, S.A.K.; Rehman, M.; Thakor, V.A.; Haider, D. Intelligent Frozen Gait Monitoring Using Software-Defined Radio Frequency Sensing. Electronics 2025, 14, 1603. https://doi.org/10.3390/electronics14081603
Khan MB, Baig H, Hayat R, Tanoli SAK, Rehman M, Thakor VA, Haider D. Intelligent Frozen Gait Monitoring Using Software-Defined Radio Frequency Sensing. Electronics. 2025; 14(8):1603. https://doi.org/10.3390/electronics14081603
Chicago/Turabian StyleKhan, Muhammad Bilal, Hamna Baig, Rimsha Hayat, Shujaat Ali Khan Tanoli, Mubashir Rehman, Vishalkumar Arjunsinh Thakor, and Daniyal Haider. 2025. "Intelligent Frozen Gait Monitoring Using Software-Defined Radio Frequency Sensing" Electronics 14, no. 8: 1603. https://doi.org/10.3390/electronics14081603
APA StyleKhan, M. B., Baig, H., Hayat, R., Tanoli, S. A. K., Rehman, M., Thakor, V. A., & Haider, D. (2025). Intelligent Frozen Gait Monitoring Using Software-Defined Radio Frequency Sensing. Electronics, 14(8), 1603. https://doi.org/10.3390/electronics14081603