Improving the Safety of Slow-Moving Autonomous Vehicles When Transporting Dangerous Goods Using GNSS-Based Control Systems
Abstract
:1. Introduction
- Equipping vehicles with modern security systems: Anti-lock brakes (ABS), Electronic Stability Control (ESC), a tire pressure monitoring system, rearview cameras and a surround view system, and blind spot sensors;
- The installation of automatic braking and collision warning systems;
- Equipping vehicles with warning devices (flashing lights and sound signals) to warn other road users;
- The use of reinforced body structures to protect the cargo in the event of an accident;
- The implementation of real-time monitoring systems for the condition of the cargo (temperature, pressure, and leaks);
- The use of GNSS to track the route and speed.
- Explosive;
- Gaseous;
- Flammable solid;
- Spontaneously combustible;
- Organic pyroxides;
- Poisonous, toxic, or infectious;
- Radioactive;
- Corrosive;
- Others [4].
In some cases of the transportation of especially dangerous or oversized cargo, it is necessary to reduce the speed of the vehicle to several kilometers per second.
It is hard to overstate the role of unmanned transport systems in the transportation of hazardous materials.
- (1)
- The proposed GNSS-based method does not exclude but complements existing speed measurement systems. In challenging environments, such as areas with poor GNSS signal quality, urban areas with significant signal obstructions, or regions with extreme weather, systems such as INS, LiDAR, or radar are contemplated, but exploring these issues is beyond the scope of this article. The study includes more than 7000 measurements, the statistical analysis is basic and does not delve into critical aspects such as confidence intervals, sensitivity analysis, or variability in the accuracy of the GNSS signal.
- (2)
- Environmental factors such as satellite geometry or multipath interference have a significant impact on the accuracy of a GNSS system, but exploring these issues is beyond the scope of this article.
2. Materials and Methods
2.1. GNSS Speed Measurement
2.2. GNSS Speed Measurement—Measuring Low-Speed Autonomous and Cargo Vehicles
2.3. The Definition of as the Maximum Value of
3. The Experiment
4. Relevance of Measurement
5. Conclusions
- Reduced fuel consumption due to smooth, optimized driving profiles;
- Lower personnel, maintenance, and operational costs;
- Time and resource savings through route optimization;
- Continuous operation without the need for driver rest breaks;
- A potential decrease in the number of road accidents.
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
N | N (min) | E | E (min) | ∆N | ∆E | S (1–2) (m) |
---|---|---|---|---|---|---|
5244.004 | 3164.004 | 1513.583 | 913.5825 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.583 | 913.5825 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.583 | 913.5825 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.583 | 913.5825 | 0 | 1 × 10−4 | 0.003087 |
5244.004 | 3164.004 | 1513.582 | 913.5824 | 1 × 10−4 | 0 | 0.003087 |
5244.004 | 3164.004 | 1513.582 | 913.5824 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.582 | 913.5824 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.582 | 913.5824 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.582 | 913.5824 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.582 | 913.5824 | 0 | 0.0001 | 0.003087 |
5244.004 | 3164.004 | 1513.582 | 913.5823 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.582 | 913.5823 | 1 × 10−4 | 0 | 0.003087 |
5244.004 | 3164.004 | 1513.582 | 913.5823 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.582 | 913.5823 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.582 | 913.5823 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.582 | 913.5823 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.582 | 913.5823 | 0 | −0.0001 | 0.003087 |
5244.004 | 3164.004 | 1513.582 | 913.5824 | −1 × 10−4 | 0 | 0.003087 |
5244.004 | 3164.004 | 1513.582 | 913.5824 | 0 | −1 × 10−4 | 0.003087 |
5244.004 | 3164.004 | 1513.583 | 913.5825 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.583 | 913.5825 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.583 | 913.5825 | 0 | −1 × 10−4 | 0.003087 |
5244.004 | 3164.004 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.583 | 913.5826 | −1 × 10−4 | −0.0001 | 0.004366 |
5244.004 | 3164.004 | 1513.583 | 913.5827 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.583 | 913.5827 | −0.0001 | 0 | 0.003087 |
5244.004 | 3164.004 | 1513.583 | 913.5827 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.583 | 913.5827 | 0 | 0 | 0 |
5244.004 | 3164.004 | 1513.583 | 913.5827 | −0.0001 | 0.0001 | 0.004366 |
5244.004 | 3164.004 | 1513.583 | 913.5826 | −1 × 10−4 | 0 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | −1 × 10−4 | 0 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | −0.0001 | 0 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 1 × 10−4 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5825 | −1 × 10−4 | 0 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5825 | −1 × 10−4 | 0 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5825 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5825 | −0.0001 | 0 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5825 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5825 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5825 | −1 × 10−4 | 0 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5825 | 0 | −1 × 10−4 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 1 × 10−4 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5825 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5825 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5825 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5825 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5825 | 0 | −1 × 10−4 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | −1 × 10−4 | 0 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | −0.0001 | 0 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5826 | 0 | −0.0001 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5827 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5827 | 0.0001 | 0 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5827 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5827 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5827 | −0.0001 | −0.0001 | 0.004366 |
5244.003 | 3164.003 | 1513.583 | 913.5828 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5828 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5828 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5828 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5828 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5828 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5828 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5828 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5828 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5828 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5828 | 0 | −0.0001 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5829 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5829 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5829 | 0 | −1 × 10−4 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.583 | 0 | −1 × 10−4 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5831 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5831 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5831 | 0.0001 | −0.0001 | 0.004366 |
5244.003 | 3164.003 | 1513.583 | 913.5832 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5832 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5832 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5832 | 0 | −0.0001 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5833 | 0 | 0.0001 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5832 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5832 | 1 × 10−4 | −0.0001 | 0.004366 |
5244.003 | 3164.003 | 1513.583 | 913.5833 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5833 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5833 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5833 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5833 | 1 × 10−4 | 0 | 0.003087 |
5244.003 | 3164.003 | 1513.583 | 913.5833 | 0 | 0 | 0 |
5244.003 | 3164.003 | 1513.583 | 913.5833 | −1 × 10−4 | 0.0001 | 0.004366 |
References
- Transport of Dangerous Goods. Available online: https://unece.org/DAM/trans/danger/publi/unrec/rev17/English/Rev17_Volume1.pdf (accessed on 1 November 2024).
- The 9 Classes of Dangerous Goods. Available online: https://www.sainthelena.gov.sh/wp-content/uploads/2012/08/The-Nine-Classes-of-Dangerous-Goods.pdf (accessed on 1 November 2024).
- Appendix on Dangerous Goods. Available online: https://www.icao.int/safety/DangerousGoods/Working%20Group%20of%20the%20Whole/WP.50.AppB.pdf (accessed on 1 November 2024).
- Transportation of Dangerous Goods Regulations. Available online: https://tc.canada.ca/sites/default/files/migrated/single_pdf_sor_2019_101___archived.pdf (accessed on 1 November 2024).
- Greatrix, G. Vehicle Speed Measurement and Law Enforcement. Meas. Control 2011, 44, 249–251. [Google Scholar] [CrossRef]
- Pourzeynali, S.; Zhu, X.; Ghari Zadeh, A.; Rashidi, M.; Samali, B. Comprehensive Study of Moving Load Identification on Bridge Structures Using the Explicit Form of Newmark-β Method: Numerical and Experimental Studies. Remote Sens. 2021, 13, 2291. [Google Scholar] [CrossRef]
- Socha, A.; Izydorczyk, J. Strain Gauge Calibration for High Speed Weight-in-Motion Station. Sensors 2024, 24, 4845. [Google Scholar] [CrossRef] [PubMed]
- Oubrich, L.; Ouassaid, M.; Maaroufi, M. Dynamic loads, source of errors of high speed weigh in motion systems. In Proceedings of the 2017 14th International Multi-Conference on Systems, Signals & Devices (SSD), Marrakech, Morocco, 28–31 March 2017; pp. 354–359. [Google Scholar] [CrossRef]
- Paszek, K.; Grzechca, D. Using the LSTM Neural Network and the UWB Positioning System to Using the LSTM Neural Network and the UWB Positioning System to Predict the Position of Low and High Speed Moving Objects. Sensors 2023, 23, 8270. [Google Scholar] [CrossRef] [PubMed]
- Fornasa, M.; Zingirian, N.; Maresca, M. Extensive GPRS Latency Characterization in Uplink Packet Transmission from Moving Vehicles. In Proceedings of the VTC Spring 2008—IEEE Vehicular Technology Conference, Marina Bay, Singapore, 11–14 May 2008; pp. 2562–2566. [Google Scholar] [CrossRef]
- Malviya, A.; Kala, R. Risk Modeling of the Overtaking Behavior in the Indian Traffic. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8–12 October 2022; pp. 2882–2887. [Google Scholar] [CrossRef]
- Taubert, S.; Wierzejski, A. Influence the structure of the road surface on the measurement of distance and speed using optical head. J. KONES Powertrain Transp. 2015, 20, 465–469. [Google Scholar] [CrossRef]
- Liang, J.; Tian, Q.; Feng, J.; Pi, D. A Polytopic Model-Based Robust Predictive Control Scheme for Path Tracking of Autonomous Vehicles. IEEE Trans. Intell. Veh. 2024, 9, 3928–3939. [Google Scholar] [CrossRef]
- Lienert, P. Self-Driving Cars Could Generate Billions in Revenue: U.S. Study//Reuters. 5 March 2015. Available online: https://www.reuters.com/article/us-usa-autosautonomous/self-driving-cars-could-generate-billionsin-revenue-u-s-study-idUSKBN0M10UF20150305 (accessed on 1 November 2024).
- Borkowski, P. Inference engine in an intelligent ship course-keeping system. Comput. Intell. Neurosci. 2017, 2017, 2561383. [Google Scholar] [CrossRef] [PubMed]
- Borkowski, P.; Zwierzewicz, Z. Ship course-keeping algorithm based on knowledge base. Intell. Autom. Soft Comput. 2011, 17, 149–163. [Google Scholar] [CrossRef]
- Self-Driving Vehicles in Logistics. A DHL Perspective on Implications and Use Cases for the Logistics Industry. DHL Trend Research. 2014. 39p. Available online: https://www.dhl.com/discover/content/dam/dhl/downloads/interim/full/dhl-self-driving-vehicles.pdf (accessed on 1 November 2024).
- Autonomous vehicles. Handing Over Control: Opportunities and Risks for Insurance. Lloyd’s. 2014. 27p. Available online: https://assets.lloyds.com/assets/pdf-autonomous-vehicles/1/pdf-autonomous-vehicles.pdf (accessed on 1 November 2024).
- Autonomous Vehicles: Navigating the Legal and Regulatory Issues of a Driverless World. Available online: https://mcca.com/wp-content/uploads/2018/04/Autonomous-Vehicles.pdf (accessed on 1 November 2024).
- Torc. Trucking: Trucks Keep Our World Moving. Available online: https://torc.ai/partnerships (accessed on 1 November 2024).
- Johnson, P. How Ford’s BlueCruise Hands-Free Tech Is Keeping Drivers Safe and Even Changing Lives. Electrek, 7 February 2023. [Google Scholar]
- Teamsters, Tech Firms Tangle Over Self-Driving Trucks Bill. Available online: https://news.bloomberglaw.com (accessed on 1 November 2024).
- Liang, Y.; Zheng, Z. MARL-OT: Multi-Agent Reinforcement Learning for Online Fuzz Testing of Autonomous Driving Systems. arXiv 2025, arXiv:2501.14451. [Google Scholar] [CrossRef]
- Nweje, I.E.; Onuma, A. Autonomous Vehicles in the Logistics Supply Chain: A Study of Regulatory, Safety, and Operational Challenges. Adv. Transp. Res. 2025, 1, 1239908. [Google Scholar] [CrossRef]
- Milenković, M.; Sumpor, D.; Tokić, S. Legal and Safety Aspects of the Application of Automated and Autonomous Vehicles in the Republic of Croatia. World Electr. Veh. J. 2025, 16, 34. [Google Scholar] [CrossRef]
- Jamuna, P.; Kumar, K.K.; Murugesan, A.; Karthikeyan, G.; Dineshkumar, S.; Sangeetha, M. Intelligent Automation in Long Vehicles through LDR Sensor Technology for Accident Prevention. In Proceedings of the 2024 International Conference on Communication, Computing and Internet of Things (IC3IoT), Chennai, India, 17–18 April 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Liang, J.; Feng, J.; Lu, Y.; Yin, G.; Zhuang, W.; Mao, X. A Direct Yaw Moment Control Framework through Robust T–S Fuzzy Approach Considering Vehicle Stability Margin. IEEE/ASME Trans. Mechatron. 2024, 29, 166–178. [Google Scholar] [CrossRef]
- Shi, Y.; Dong, H.; He, C.R.; Chen, Y.; Song, Z. Mixed Vehicle Platoon Forming: A Multi-Agent Reinforcement Learning Approach. IEEE Internet Things J. 2025. [Google Scholar] [CrossRef]
- Vehicle Speed Measurement Technique Using Various Speed Detection Instrumentation. Available online: https://www.researchgate.net/publication/261238039_Vehicle_speed_measurement_technique_using_various_speed_detection_instrumentation (accessed on 1 November 2024).
- Psiaki, M.L.; O’Hanlon, B.W.; Powell, S.P.; Bhatti, J.A.; Wesson, K.D.; Humphreys, T.E.; Schofield, A. GNSS Spoofing Detection using Two-Antenna Differential Carrier Phase. In Proceedings of the 27th international technical meeting of the satellite division of the Institute of Navigation (ION GNSS+ 2014), Tampa, FL, USA, 8–12 September 2014. [Google Scholar]
- Zalewski, P. Real-time GNSS spoofing detection in maritime code receivers. Sci. J. Marit. Univ. Szczec. 2014, 38, 118–124. [Google Scholar]
- Humphreys, T.E. Detection Strategy for Cryptographic GNSS Anti-Spoofing. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 1073–1090. [Google Scholar] [CrossRef]
- Levin, P.; De Lorenzo, D.S.; Enge, P.K.; Lo, S.C. Authenticating a Signal Based on an Unknown Component Thereof. U.S. Patent No. 7,969,354 B2, 28 June 2011. [Google Scholar]
- Li, Z.; Gebre-Egziabher, D. Performance Analysis of a Civilian GPS Position Authentication System. Navigation 2013, 60, 246–265. [Google Scholar] [CrossRef]
- Caparra, G.; Ceccato, S.; Laurenti, N.; Cramer, J. Feasibility and Limitations of Self-Spoofing Attacks on GNSS Signals with Message Authentication. In Proceedings of the 30th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2017), Portland, Oregon, 25–29 September 2017; pp. 3968–3984. [Google Scholar]
- Psiaki, M.L.; Powell, S.P.; O’Hanlon, B.W. GNSS Spoofing Detection Using High-Frequency Antenna Motion and Carrier-Phase Data. In Proceedings of the 26th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2013), Nashville, TN, USA, 16–20 September 2013; pp. 2949–2991. [Google Scholar]
- Swaszek, P.F.; Hartnett, R.J. A Multiple COTS Receiver GNSS Spoof Detector—Extensions. In Proceedings of the International Technical Meeting of the ION, San Diego, CA, USA, 8–12 September 2014; pp. 316–326. [Google Scholar]
- Trinkle, M.; Zhang, Z.; Li, H.; Dimitrovski, A. GPS Anti-Spoofing Techniques for Smart Grid Applications. In Proceedings of the 25th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2012), Nashville, TN, USA, 17–21 September 2012; pp. 1270–1278. [Google Scholar]
- Hwang, P.Y.; McGraw, G.A. Receiver Autonomous Signal Authentication (RASA) Based on Clock Stability Analysis. In Proceedings of the 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014, Monterey, CA, USA, 5–8 May 2014; pp. 270–281. [Google Scholar]
- Pini, M.; Fantino, M.; Cavaleri, A.; Ugazio, S.; Lo Presti, L. Signal Quality Monitoring Applied to Spoofing Detection. In Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011), Portland, OR, USA, 20–23 September 2011; pp. 1888–1896. [Google Scholar]
- Yuan, D.; Li, H.; Lu, M.A. Method for GNSS Spoofing Detection Based on Sequential Probability Ratio Test. In Proceedings of the 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014, Monterey, CA, USA, 5–8 May 2014; pp. 351–358. [Google Scholar]
- Lemieszewski, Ł.; Radomska-Zalas, A.; Perec, A.; Dobryakova, L.; Ochin, E. The Spoofing Detection of Dynamic Underwater Positioning Systems (DUPS) Based on Vehicles Retrofitted with Acoustic Speakers. Electronics 2021, 10, 2089. [Google Scholar] [CrossRef]
- Ochin, E.; Lemieszewski, Ł. Układ do Wykrywania Elektronicznego Ataku Typu Spoofing Sygnału Globalnego Systemu Nawigacji Satelitarnej GNSS. 2019; Application no. 432296. pp. 61–62. Available online: https://uprp.gov.pl/sites/default/files/bup/2021/Wynalazki%20i%20wzory%20u%C5%BCytkowe/06_12-13/13//bup13_2021.pdf (accessed on 1 November 2024).
- Lemieszewski, Ł.; Radomska-Zalas, A.; Perec, A.; Dobryakova, L.; Ochin, E. GNSS and LNSS Positioning of Unmanned Transport Systems: The Brief Classification of Terrorist Attacks on USVs and UUVs. Electronics 2021, 10, 401. [Google Scholar] [CrossRef]
- Dobryakova, L.; Lemeszewski, Ł.; Ochin, E. GNSS Spoofing Detection Using Static or Rotating Single-Antenna of a Static or Moving Victim. IEEE Access 2018, 6, 79074–79081. [Google Scholar] [CrossRef]
- Stefanini, L.; Sorini, L.; Guerra, M. Fuzzy Numbers and Fuzzy Arithmetic. In Handbook of Granular Computing; Pedrycz, W., Skowron, A., Kreinovich, V., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2008; Chapter 12; pp. 249–283. [Google Scholar]
- Mitcom Electronic. GPS R75BT A-GPS HV60—Professional Precision D-GPS/GLONASS Receiver with Bluetooth and Shock-Resistant Fixed-Mount Antenna for Agriculture, Transport, and Navigation. Available online: https://mitcom-electronic.shoplo.com/gps-r75bt-agps-hv60-profesjonalny-precyzyjny-odbiornik-d-gps-glonass-z-funkcja-bluetooth-specjalistyczna-udar-odporna-antena-do-montazu-stalego-rolnictwo-transport-nawigacja-kopia (accessed on 21 March 2025).
i | Ei, | ||||
---|---|---|---|---|---|
1 | 5244.004 | 3164.004 | 1513.583 | 913.5825 | 0 |
2 | 5244.004 | 3164.004 | 1513.583 | 913.5825 | 0 |
… | … | … | … | … | … |
98 | 5244.003 | 3164.003 | 1513.583 | 913.5833 | 0 |
99 | 5244.003 | 3164.003 | 1513.583 | 913.5833 | 0.004366 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lemieszewski, Ł. Improving the Safety of Slow-Moving Autonomous Vehicles When Transporting Dangerous Goods Using GNSS-Based Control Systems. Electronics 2025, 14, 1643. https://doi.org/10.3390/electronics14081643
Lemieszewski Ł. Improving the Safety of Slow-Moving Autonomous Vehicles When Transporting Dangerous Goods Using GNSS-Based Control Systems. Electronics. 2025; 14(8):1643. https://doi.org/10.3390/electronics14081643
Chicago/Turabian StyleLemieszewski, Łukasz. 2025. "Improving the Safety of Slow-Moving Autonomous Vehicles When Transporting Dangerous Goods Using GNSS-Based Control Systems" Electronics 14, no. 8: 1643. https://doi.org/10.3390/electronics14081643
APA StyleLemieszewski, Ł. (2025). Improving the Safety of Slow-Moving Autonomous Vehicles When Transporting Dangerous Goods Using GNSS-Based Control Systems. Electronics, 14(8), 1643. https://doi.org/10.3390/electronics14081643