FPGA-Based Low-Power High-Performance CNN Accelerator Integrating DIST for Rice Leaf Disease Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. DIST in Rice Disease Identification
2.2. MobileNetV2 Acceleration Architecture Based on FPGA
2.3. Optimization of MobileNetV2 Circuit Based on HLS
2.3.1. Irregular Matrix Partitioning
2.3.2. Reusable Cache Structure
2.3.3. Ping-Pong Operations
2.3.4. External Memory Access Optimization
2.3.5. Parallel Collaborative Computing Optimization
3. Results and Discussion
3.1. Multimodal Rice Disease Datasets
3.2. Plant Disease Identification Results of MobileNetV2
3.3. Optimization of MobileNetV2 Acceleration Circuit
3.4. Effect of DIST
3.5. Evaluation of FPGA and Other Computing Devices
4. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using Deep Learning for Image-Based Plant Disease Detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Teo, T.H.; Kok, C.L.; Koh, Y.Y. A Novel Single-Word Speech Recognition on Embedded Systems Using a Convolution Neuron Network with Improved Out-of-Distribution Detection. Electronics 2024, 13, 530. [Google Scholar] [CrossRef]
- Jiang, P.; Chen, Y.; Liu, B.; He, D.; Liang, C. Real-Time Detection of Apple Leaf Diseases Using Deep Learning Approach Based on Improved Convolutional Neural Networks. IEEE Access 2019, 7, 59069–59080. [Google Scholar] [CrossRef]
- Pathan, M.; Patel, N.; Yagnik, H.; Shah, M. Artificial Cognition for Applications in Smart Agriculture: A Comprehensive Review. Artif. Intell. Agric. 2020, 4, 81–95. [Google Scholar] [CrossRef]
- Rupanagudi, S.R.; Ranjani, B.S.; Nagaraj, P.; Bhat, V.G.; Thippeswamy, G. A Novel Cloud Computing Based Smart Farming System for Early Detection of Borer Insects in Tomatoes. In Proceedings of the 2015 International Conference on Communication, Information & Computing Technology (ICCICT), Mumbai, India, 15–17 January 2015. [Google Scholar]
- Wagle, S.A. A Deep Learning-Based Approach in Classification and Validation of Tomato Leaf Disease. Trait. Signal 2021, 38, 140. [Google Scholar] [CrossRef]
- Luo, Y.; Cai, X.; Qi, J.; Guo, D.; Che, W. FPGA–Accelerated CNN for Real-Time Plant Disease Identification. Comput. Electron. Agric. 2023, 207, 107715. [Google Scholar] [CrossRef]
- Chang, X.; Pan, H.; Lin, W.; Gao, H. A Mixed-Pruning Based Framework for Embedded Convolutional Neural Network Acceleration. IEEE Trans. Circuits Syst. I 2021, 68, 1706–1715. [Google Scholar] [CrossRef]
- Dai, G.; Fan, J. An Industrial-Grade Solution for Crop Disease Image Detection Tasks. Front. Plant Sci. 2022, 13, 921057. [Google Scholar] [CrossRef]
- Hsieh, T.-H.; Kiang, J.-F. Comparison of CNN Algorithms on Hyperspectral Image Classification in Agricultural Lands. Sensors 2020, 20, 1734. [Google Scholar] [CrossRef]
- Mohammed; Swapnil, A.L.; Peris, M.D.; Nihal, I.H.; Khan, R.; Matin, M.A. Multimodal Deep Learning for Violence Detection: VGGish and MobileViT Integration with Knowledge Distillation on Jetson Nano. IEEE Open J. Commun. Soc. 2024, 6, 2907–2925. [Google Scholar] [CrossRef]
- Kok, C.L.; Heng, J.B.; Koh, Y.Y.; Teo, T.H. Energy-, Cost-, and Resource-Efficient IoT Hazard Detection System with Adaptive Monitoring. Sensors 2025, 25, 1761. [Google Scholar] [CrossRef]
- Sterpone, L.; Azimi, S.; De Sio, C. CNN-Oriented Placement Algorithm for High-Performance Accelerators on Rad-Hard FPGAs. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2023, 43, 1079–1092. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, Y.; Yang, J.; Wang, H.; Zhao, Y.; Zhang, C.; Xiao, B.; Xu, F.; Gao, Y.; Xu, M.; et al. An FPGA-Based Online Reconfigurable CNN Edge Computing Device for Object Detection. Microelectron. J. 2023, 137, 105805. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.; Yadav, N.; Li, S.; Choi, K.K. Low-Power RTL Code Generation for Advanced CNN Algorithms Toward Object Detection in Autonomous Vehicles. Electronics 2020, 9, 478. [Google Scholar] [CrossRef]
- Liao, J.-X.; Wei, S.-L.; Xie, C.-L.; Zeng, T.; Sun, J.; Zhang, S.; Zhang, X.; Fan, F.-L. BearingPGA-Net: A Lightweight and Deployable Bearing Fault Diagnosis Network via Decoupled Knowledge Distillation and FPGA Acceleration. IEEE Trans. Instrum. Meas. 2023, 73, 1–14. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, W.; Guo, Q.; Shi, J.; Chang, S.; Wang, H.; He, J.; Huang, Q. DDDG: A Dual Bi-Directional Knowledge Distillation Method with Generative Self-Supervised Pre-Training and Its Hardware Implementation on SoC for ECG. Expert Syst. Appl. 2024, 244, 122969. [Google Scholar] [CrossRef]
- Stewart, R.; Nowlan, A.; Bacchus, P.; Ducasse, Q.; Komendantskaya, E. Optimising Hardware Accelerated Neural Networks with Quantisation and a Knowledge Distillation Evolutionary Algorithm. Electronics 2021, 10, 396. [Google Scholar] [CrossRef]
- Ahmed, H.O.; Ghoneima, M.; Dessouky, M. Systolic-Based Pyramidal Neuron Accelerator Blocks for Convolutional Neural Network. Microelectron. J. 2019, 89, 16–22. [Google Scholar] [CrossRef]
- Saidi, A. FPGA-Based Implementation of Classification Techniques: A Survey. Integration 2021, 81, 280–299. [Google Scholar] [CrossRef]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson Correlation Coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–4. [Google Scholar]
- Wu, D.; Zhang, Y.; Jia, X.; Tian, L.; Li, T.; Sui, L.; Xie, D.; Shan, Y. A High-Performance CNN Processor Based on FPGA for MobileNets. In Proceedings of the 2019 29th International Conference on Field Programmable Logic and Applications (FPL), Barcelona, Spain, 8–12 September 2019; p. 136. [Google Scholar]
- Li, H.; Fan, X.; Jiao, L.; Cao, W.; Zhou, X.; Wang, L. A High Performance FPGA-Based Accelerator for Large-Scale Convolutional Neural Networks. In Proceedings of the 2016 26th International Conference on Field Programmable Logic and Applications (FPL), Lausanne, Switzerland, 29 August–2 September 2016; pp. 1–9. [Google Scholar]
- Ma, Y.; Cao, Y.; Vrudhula, S.; Seo, J.-S. Optimizing Loop Operation and Dataflow in FPGA Acceleration of Deep Convolutional Neural Networks. In Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2017; pp. 45–54. [Google Scholar]
- Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-Based Accelerator Design for Deep Convolutional Neural Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2015; pp. 161–170. [Google Scholar]
- Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding. In Proceedings of the International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017. [Google Scholar]
- Petrović, B.; Bumbálek, R.; Zoubek, T.; Kuneš, R.; Smutný, L.; Bartoš, P. Application of Precision Agriculture Technologies in Central Europe-Review. J. Agric. Food Res. 2024, 15, 101048. [Google Scholar] [CrossRef]
- Tarek, H.; Aly, H.; Eisa, S.; Abul-Soud, M. Optimized Deep Learning Algorithms for Tomato Leaf Disease Detection with Hardware Deployment. Electronics 2022, 11, 140. [Google Scholar] [CrossRef]
- Suharjito; Elwirehardja, G.N.; Prayoga, J.S. Oil Palm Fresh Fruit Bunch Ripeness Classification on Mobile Devices Using Deep Learning Approaches. Comput. Electron. Agric. 2021, 188, 106359. [Google Scholar] [CrossRef]
- Zhao, G.; Quan, L.; Li, H.; Feng, H.; Li, S.; Zhang, S.; Liu, R. Real-Time Recognition System of Soybean Seed Full-Surface Defects Based on Deep Learning. Comput. Electron. Agric. 2021, 187, 106230. [Google Scholar] [CrossRef]
- Razfar, N.; True, J.; Bassiouny, R.; Venkatesh, V.; Kashef, R. Weed Detection in Soybean Crops Using Custom Lightweight Deep Learning Models. J. Agric. Food Res. 2022, 8, 100308. [Google Scholar] [CrossRef]
Types of Diseases | Number of Images | ||
---|---|---|---|
Mobile Phone | UAV | All | |
white leaf blight | 4256 | 4665 | 8921 |
rice stalk blight | 2554 | 1064 | 3618 |
rice borer | 3417 | 2608 | 6025 |
rice leaf roller | 1287 | 2279 | 3566 |
neck blast | 3629 | - | 3629 |
leaf plague | 2136 | 1677 | 3813 |
glume blight | 2738 | 1380 | 4118 |
healthy | 3805 | 3381 | 7186 |
Hardware Unit Usage | Power (W) | Speed (s) | |||||
---|---|---|---|---|---|---|---|
DSP | BRAM | FF | LUTRAM | LUT | |||
without optimization | 90 | 266 | 50,008 | 4698 | 43,626 | 2.704 | 0.138 |
after optimization | 202 | 274 | 57,456 | 4526 | 46,262 | 3.154 | 0.043 |
Power Usage (W) | Clocks | Signals | Logic | BRAM | DSP | PS7 | ALL |
---|---|---|---|---|---|---|---|
without optimization | 0.140 | 0.481 | 0.236 | 0.333 | 0.212 | 1.302 | 2.704 |
using DPU-P (Xilinx IP) | 0.139 | 0.474 | 0.252 | 0.330 | 0.437 | 1.300 | 2.932 |
after optimization | 0.181 | 0.506 | 0.301 | 0.344 | 0.520 | 1.302 | 3.154 |
Type of Knowledge Distillation | Accuracy (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
White Leaf Blight | Rice Stalk Blight | Rice Borer | Healthy | Rice Leaf Roller | Neck Blast | Leaf Plague | Glume Blight | All | |
MBV2 | 98.5 | 100.0 | 85.8 | 94.5 | 98.4 | 99.7 | 97.7 | 98.8 | 95.9 |
MBV2-KD | 99.0 | 100.0 | 93.3 | 95.3 | 95.6 | 99.3 | 98.4 | 96.3 | 96.7 |
MBV2-DIST | 98.0 | 100.0 | 93.4 | 96.3 | 96.8 | 100 | 100 | 98.8 | 97.4 |
Type of Knowledge Distillation | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%) |
---|---|---|---|---|
MBV2 | 95.91 | 96.24 | 96.66 | 96.36 |
MBV2-KD | 96.68 | 96.7 | 96.68 | 97.01 |
MBV2-DIST | 97.41 | 97.33 | 98.02 | 97.66 |
CNN | Equipment | Accuracy | Speed (s) | Power (w) | 1/(Speed × Power) | Cost (USD) |
---|---|---|---|---|---|---|
MobileNetV2-large [29] | Raspberry Pi 4 | 95.67% | 0.325 | 5 | 15.38 | 41.1 |
MobileNetV2 [30] | Cortex-A53 | 89.30% | 0.096 | - | - | 171.1 |
MobileNetV1 [31] | Jetson Nano | 97.84% | 0.286 | 5.1 | 17.83 | 338.3 |
MobileNetV2 [32] | Raspberry Pi 4 | 97.70% | 22.25 | 5 | 0.22 | 41.1 |
MobileNetV3-S [28] | Raspberry Pi 4 | 98.99% | 0.251 | 5 | 19.92 | 41.1 |
MobileNetV2 [7] | Intel Core i5-6200U | 95.24% | 0.14 | 15 | 107.14 | 301.1 |
MobileNetV2 [7] | Intel Xeon Bronze3106 | 95.24% | 0.18 | 14.54 | 80.78 | 260.2 |
MobileNetV2 | Raspberry Pi 4B | 95.91% | 0.291 | 5.06 | 17.39 | 82.2 |
MobileNetV2 | Jetson TX2 | 95.91% | 0.029 | 5.1 | 175.86 | 794.5 |
MobileNetV2 (Use DPU-P) | ZYNQ-AC7Z020 | 95.91% | 0.139 | 2.67 | 19.21 | 93.0 |
This work | ZYNQ-AC7Z020 | 97.41% | 0.043 | 3.15 | 73.26 | 93.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Lv, Z.; Li, D.; Lu, C.; Zhang, Y.; Fu, L.; Huang, X.; Huang, J.; Chen, D.; Zhang, J. FPGA-Based Low-Power High-Performance CNN Accelerator Integrating DIST for Rice Leaf Disease Classification. Electronics 2025, 14, 1704. https://doi.org/10.3390/electronics14091704
Zheng J, Lv Z, Li D, Lu C, Zhang Y, Fu L, Huang X, Huang J, Chen D, Zhang J. FPGA-Based Low-Power High-Performance CNN Accelerator Integrating DIST for Rice Leaf Disease Classification. Electronics. 2025; 14(9):1704. https://doi.org/10.3390/electronics14091704
Chicago/Turabian StyleZheng, Jingwen, Zefei Lv, Dayang Li, Chengbo Lu, Yang Zhang, Liangzun Fu, Xiwei Huang, Jiye Huang, Dongmei Chen, and Jingcheng Zhang. 2025. "FPGA-Based Low-Power High-Performance CNN Accelerator Integrating DIST for Rice Leaf Disease Classification" Electronics 14, no. 9: 1704. https://doi.org/10.3390/electronics14091704
APA StyleZheng, J., Lv, Z., Li, D., Lu, C., Zhang, Y., Fu, L., Huang, X., Huang, J., Chen, D., & Zhang, J. (2025). FPGA-Based Low-Power High-Performance CNN Accelerator Integrating DIST for Rice Leaf Disease Classification. Electronics, 14(9), 1704. https://doi.org/10.3390/electronics14091704