Color Normalization Through a Simulated Color Checker Using Generative Adversarial Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for the Algorithm Based on Machine Learning and Color Checker (ML-CN-CC)
2.2. Materials for the Algorithm Based on GAN for Color Normalization Simulating the Use of a Color Checker (GAN-CN-CC)
2.3. Methods for the Algorithm Based on Machine Learning and Color Checker (ML-CN-CC)
2.4. Methods for the Algorithm Based on GAN for Color Normalization Simulating the Use of a Color Checker (GAN-CN-CC)
- Lightness difference.
- Chroma difference.
- Hue difference.
- , , _ Parametric weighting factors. We will take , and
- , , Scaling functions for lightness, chroma, and hue.
- Rotation term to account for interactions between chroma and hue.
3. Results
3.1. Results for the Algorithm Based on Machine Learning and Color Checker (ML-CN-CC)
- ≤ 1: ideal for imperceptible differences.
- 1 < ≤ 3: acceptable in most applications.
3.2. Results for the Algorithm Based on GAN for Color Normalization Simulating the Use of a Color Checker (GAN-CN-CC)
- Quantitative evaluation
- Loss functions.
- Pixel-by-pixel MSE differences.
- Structural similarity index.
- Fréchet Inception Distance (FID) [15], which compares the distributions of features extracted from real and generated images using a pre-trained inception network, measuring the similarity of their means and covariances. A small FID value indicates the generation of high-fidelity images.
- Number of parameters (NoP) reflects the number of parameters in networks.
- Floating point of operations (FLOPs) evaluates the computation cost of networks.
- Qualitative evaluation
- Visual inspection of generated images to assess realism and adherence to input conditions.
3.3. Comparative Evaluation of GAN-CN-CC with State-of-the-Art Color Normalization Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nassau, K. Fundamentals of color science. In Azimuth; Nassau, E.K., Ed.; North-Holland: Amsterdam, The Netherlands, 1998; Volume 1, pp. 1–30. [Google Scholar] [CrossRef]
- Salvi, M.; Branciforti, F.; Molinari, F.; Meiburger, K.M. Generative models for color normalization in digital pathology and dermatology: Advancing the learning paradigm. Expert Syst. Appl. 2024, 245, 123105. [Google Scholar] [CrossRef]
- Buchsbaum, G. A spatial processor model for object colour perception. J. Frankl. Inst. 1980, 310, 1–26. [Google Scholar] [CrossRef]
- Finlayson, G.D.; Mackiewicz, M.; Hurlbert, A. Color correction using root-polynomial regression. IEEE Trans. Image Process. 2015, 24, 1460–1470. [Google Scholar] [CrossRef] [PubMed]
- Kucuk, A.; Finlayson, G.; Mantiuk, R.; Ashraf, M. Comparison of Regression Methods and Neural Networks for Colour Corrections. In London Imaging Meeting; Society for Imaging Science and Technology: Cambridge, MA, USA, 2022; Volume 3, pp. 74–79. [Google Scholar]
- Garrido-Jurado, S.; Muñoz-Salinas, R.; Madrid-Cuevas, F.J.; Marín-Jiménez, M.J. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 2014, 47, 2280–2292. [Google Scholar] [CrossRef]
- Senthilkumaran, V. Color correction using color checkers. In Proceedings of the First International Conference on Combinatorial and Optimization, ICCAP 2021, Chennai, India, 7–8 December 2021. [Google Scholar]
- Cheng, H.D.; Cai, X.; Min, R. A novel approach to color normalization using neural network. Neural Comput. Appl. 2009, 18, 237–247. [Google Scholar] [CrossRef]
- MacDonald, L.; Mayer, K. Camera Colour Correction using Neural Networks. In London Imaging Meeting; Society for Imaging Science and Technology: Cambridge, MA, USA, 2021; Volume 2, pp. 54–57. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. Commun. ACM 2020, 63, 139–144. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Luo, M.R.; Cui, G.; Rigg, B. The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res. Appl. 2001, 26, 340–350. [Google Scholar] [CrossRef]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, W.; Deng, Y. Frechet Inception Distance (FID) for Evaluating GANs; China University of Mining Technology Beijing Graduate School: Beijing, China, 2021; Volume 3. [Google Scholar]
- Gijsenij, A.; Gevers, T.; Van De Weijer, J. Computational color constancy: Survey and experiments. IEEE Trans. Image Process. 2011, 20, 2475–2489. [Google Scholar] [CrossRef]
- Salvi, M.; Branciforti, F.; Veronese, F.; Zavattaro, E.; Tarantino, V.; Savoia, P.; Meiburger, K.M. DermoCC-GAN: A new approach for standardizing dermatological images using generative adversarial networks. Comput. Methods Programs Biomed. 2022, 225, 107040. [Google Scholar] [CrossRef] [PubMed]
- Sudhamsh, G.V.S.; Rashmi, R.; Girisha, S. Enhancing Histopathological Image Analysis: A Study on Effect of Color Normalization and Activation Functions. In Proceedings of the International Conference on Computation of Artificial Intelligence & Machine Learning, Jaipur, India, 18–19 January 2024; Springer Nature: Cham, Switzerland, 2024; pp. 220–232. [Google Scholar]
- Hemrit, G.; Finlayson, G.D.; Gijsenij, A.; Gehler, P.; Bianco, S.; Funt, B.; Drew, M.; Shi, L. Rehabilitating the colorchecker dataset for illuminant estimation. arXiv 2018, arXiv:1805.12262. [Google Scholar] [CrossRef]
Device |
---|
Vivo V40 Lite |
Redmi Note 10 Pro Samsung Galaxy A23 5G |
Method | Exec Time (s) | NMI SD | NMI CV |
---|---|---|---|
Original images | - | 0.17778 | 0.32832 |
GWO | 0.00140 | 0.17880 | 0.33284 |
MRGB | 0.00043 | 0.18752 | 0.38284 |
GAN-CN-CC | 0.06809 | 0.19622 | 0.32603 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langa, A.S.; Bolaño, R.R.; Carrión, S.G.; Elorrieta, I.U. Color Normalization Through a Simulated Color Checker Using Generative Adversarial Networks. Electronics 2025, 14, 1746. https://doi.org/10.3390/electronics14091746
Langa AS, Bolaño RR, Carrión SG, Elorrieta IU. Color Normalization Through a Simulated Color Checker Using Generative Adversarial Networks. Electronics. 2025; 14(9):1746. https://doi.org/10.3390/electronics14091746
Chicago/Turabian StyleLanga, Albert Siré, Ramón Reig Bolaño, Sergi Grau Carrión, and Ibon Uribe Elorrieta. 2025. "Color Normalization Through a Simulated Color Checker Using Generative Adversarial Networks" Electronics 14, no. 9: 1746. https://doi.org/10.3390/electronics14091746
APA StyleLanga, A. S., Bolaño, R. R., Carrión, S. G., & Elorrieta, I. U. (2025). Color Normalization Through a Simulated Color Checker Using Generative Adversarial Networks. Electronics, 14(9), 1746. https://doi.org/10.3390/electronics14091746