Skin Admittance Measurement for Emotion Recognition: A Study over Frequency Sweep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Frequency Sensorized Glove
2.2. EDA Processing Using cvxEDA Algorithm
2.3. Experimental Protocol
- initial resting phase of 1 min;
- maximal expiration task phase of about 1 min;
- affective visual stimulation phase of 2 min;
- final resting phase of 1 min;
2.3.1. Maximal Expiration Task
2.3.2. Affective Visual Stimulation
2.4. EDA Analysis and Classification Procedure
Classification Procedure
3. Results
3.1. Maximal Expiration Task Results
3.2. Automatic Arousal Recognition Results
4. Discussions and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gross, J.J.; Muñoz, R.F. Emotion regulation and mental health. Clin. Psychol. Sci. Pract. 1995, 2, 151–164. [Google Scholar] [CrossRef]
- Berking, M.; Wupperman, P. Emotion regulation and mental health: recent findings, current challenges, and future directions. Curr. Opin. Psychiatry 2012, 25, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Posner, J.; Russell, J.A.; Peterson, B.S. The circumplex model of affect: An integrative approach to affective neuroscience, cognitive development, and psychopathology. Dev. Psychopathol. 2005, 17, 715–734. [Google Scholar] [CrossRef] [PubMed]
- Schlosberg, H. Three dimensions of emotion. Psychol. Rev. 1954, 61, 81. [Google Scholar] [CrossRef] [PubMed]
- Ortony, A.; Clore, G.L.; Collins, A. The Cognitive Structure of Emotions; Cambridge University Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Lisetti, C.L.; Gmytrasiewicz, P. Can a rational agent afford to be affectless? A formal approach. Appl. Artif. Intell. 2002, 16, 577–609. [Google Scholar] [CrossRef]
- Reisenzein, R.; Hudlicka, E.; Dastani, M.; Gratch, J.; Hindriks, K.; Lorini, E.; Meyer, J.J.C. Computational modeling of emotion: Toward improving the inter-and intradisciplinary exchange. IEEE Trans. Affect. Comput. 2013, 4, 246–266. [Google Scholar] [CrossRef] [Green Version]
- Greco, A.; Valenza, G.; Nardelli, M.; Bianchi, M.; Citi, L.; Scilingo, E.P. Force–Velocity Assessment of Caress-Like Stimuli Through the Electrodermal Activity Processing: Advantages of a Convex Optimization Approach. IEEE Trans. Hum. Mach. Syst. 2016, 1–10. [Google Scholar] [CrossRef]
- Calvo, R.A.; D’Mello, S. Affect detection: An interdisciplinary review of models, methods, and their applications. IEEE Trans. Affect. Comput. 2010, 1, 18–37. [Google Scholar] [CrossRef]
- Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Valenza, G.; Nardelli, M.; Gentili, C.; Bertschy, G.; Kosel, M.; Scilingo, E.P. Predicting Mood Changes in Bipolar Disorder through Heartbeat Nonlinear Dynamics. Biomed. Health Inform. 2016, 20, 1034–1043. [Google Scholar] [CrossRef]
- Rukavina, S.; Gruss, S.; Hoffmann, H.; Tan, J.W.; Walter, S.; Traue, H.C. Affective Computing and the Impact of Gender and Age. PLoS ONE 2016, 11, e0150584. [Google Scholar] [CrossRef] [PubMed]
- Valenza, G.; Citi, L.; Gentili, C.; Lanata, A.; Scilingo, E.P.; Barbieri, R. Point-process nonlinear autonomic assessment of depressive states in bipolar patients. Methods Inf. Med. 2014, 53, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Lanata, A.; Greco, A.; Valenza, G.; Scilingo, E.P. A pattern recognition approach based on electrodermal response for pathological mood identification in bipolar disorders. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 3601–3605.
- Valenza, G.; Lanatà, A.; Scilingo, E.P.; De Rossi, D. Towards a smart glove: Arousal recognition based on textile electrodermal response. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 3598–3601.
- Cowie, R.; Douglas-Cowie, E.; Tsapatsoulis, N.; Votsis, G.; Kollias, S.; Fellenz, W.; Taylor, J.G. Emotion recognition in human-computer interaction. IEEE Signal Process. Mag. 2001, 18, 32–80. [Google Scholar] [CrossRef]
- Mazzei, D.; Greco, A.; Lazzeri, N.; Zaraki, A.; Lanata, A.; Igliozzi, R.; Mancini, A.; Stoppa, F.; Scilingo, E.P.; Muratori, F. Robotic social therapy on children with autism: preliminary evaluation through multi-parametric analysis. In Proceedings of the 2012 International Conference on Privacy, Security, Risk and Trust (PASSAT), and 2012 International Confernece on Social Computing (SocialCom), Amsterdam, The Netherlands, 3–5 September 2012; pp. 955–960.
- Betella, A.; Zucca, R.; Cetnarski, R.; Greco, A.; Lanatà, A.; Mazzei, D.; Tognetti, A.; Arsiwalla, X.D.; Omedas, P.; De, R.D. Inference of human affective states from psychophysiological measurements extracted under ecologically valid conditions. Using Neurophysiol. Signals Reflect Cognit. Affect. State 2015, 66. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, C.N.; Iliou, T.; Giannoukos, I. Features and classifiers for emotion recognition from speech: A survey from 2000 to 2011. Artif. Intell. Rev. 2015, 43, 155–177. [Google Scholar] [CrossRef]
- Lanatà, A.; Valenza, G.; Greco, A.; Gentili, C.; Bartolozzi, R.; Bucchi, F.; Frendo, F.; Scilingo, E.P. How the Autonomic Nervous System and Driving Style Change With Incremental Stressing Conditions During Simulated Driving. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1505–1517. [Google Scholar] [CrossRef]
- Valenza, G.; Greco, A.; Gentili, C.; Lanata, A.; Sebastiani, L.; Menicucci, D.; Gemignani, A.; Scilingo, E. Combining electroencephalographic activity and instantaneous heart rate for assessing brain-heart dynamics during visual emotional elicitation in healthy subjects. Philos. Trans. R. Soc. A 2016, 374, 20150176. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; André, E. Emotion recognition based on physiological changes in music listening. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 2067–2083. [Google Scholar] [PubMed]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. Deap: A database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 2012, 3, 18–31. [Google Scholar] [CrossRef]
- Jang, E.; Rak, B.; Kim, S.; Sohn, J. Emotion classification by machine learning algorithm using physiological signals. Proc. Comput. Sci. Inform. Technol. Singap. 2012, 25, 1–5. [Google Scholar]
- Healey, J.A.; Picard, R.W. Detecting stress during real-world driving tasks using physiological sensors. IEEE Trans. Intell. Transp. Syst. 2005, 6, 156–166. [Google Scholar] [CrossRef]
- Koji, N.; Nozawa, A.; Ide, H. Evaluation of emotions by nasal skin temperature on auditory stimulus and olfactory stimulus. IEEJ Trans. Electron. Inform. Syst. 2004, 124, 1914–1915. [Google Scholar] [CrossRef]
- Lanata, A.; Valenza, G.; Scilingo, E.P. Eye gaze patterns in emotional pictures. J. Ambient Intell. Hum. Comput. 2013, 4, 705–715. [Google Scholar] [CrossRef]
- Lanata, A.; Scilingo, E.P.; De Rossi, D. A multimodal transducer for cardiopulmonary activity monitoring in emergency. IEEE Trans. Inform. Technol. Biomed. 2010, 14, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Krupa, N.; Anantharam, K.; Sanker, M.; Datta, S.; Sagar, J.V. Recognition of emotions in autistic children using physiological signals. Health Technol. 2016. [Google Scholar] [CrossRef]
- Boucsein, W. Electrodermal Activity; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Greco, A.; Valenza, G.; Lanata, A.; Rota, G.; Scilingo, E. Electrodermal Activity in Bipolar Patients during Affective Elicitation. IEEE J. Biomed. Health Inform. 2014, 18, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Olausson, H.; Cole, J.; Rylander, K.; McGlone, F.; Lamarre, Y.; Wallin, B.G.; Krämer, H.; Wessberg, J.; Elam, M.; Bushnell, M.C.; et al. Functional role of unmyelinated tactile afferents in human hairy skin: Sympathetic response and perceptual localization. Exp. Brain Res. 2008, 184, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.A.; Powell, H.C., Jr.; Barth, A.T.; Ringgenberg, K.; Calhoun, B.H.; Aylor, J.H.; Lach, J. Body area sensor networks: Challenges and opportunities. Computer 2009, 42, 58. [Google Scholar] [CrossRef]
- Martínez-Rodrigo, A.; Zangróniz, R.; Pastor, J.M.; Fernández-Caballero, A. Arousal level classification in the ageing adult by measuring electrodermal skin conductivity. In Ambient Intelligence for Health; Springer: New York, NY, USA, 2015; pp. 213–223. [Google Scholar]
- Lee, Y.; Lee, B.; Lee, M. Wearable sensor glove based on conducting fabric using electrodermal activity and pulse-wave sensors for e-health application. Telemed. E-Health 2010, 16, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabilit. 2012, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Garbarino, M.; Lai, M.; Bender, D.; Picard, R.W.; Tognetti, S. Empatica E3—A wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In Proceedings of the 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), Athens, Greece, 3–5 November 2014; pp. 39–42.
- Martinsen, O.G.; Grimnes, S. Bioimpedance and Bioelectricity Basics; Academic press: Cambridge, MA, USA, 2011. [Google Scholar]
- Martinsen, Ø.; Grimnes, S.; Sveen, O. Dielectric properties of some keratinised tissues. Part 1: Stratum corneum and nailin situ. Med. Biol. Eng. Comput. 1997, 35, 172–176. [Google Scholar]
- Lanatà, A.; Valenza, G.; Scilingo, E.P. A novel EDA glove based on textile-integrated electrodes for affective computing. Med. Biol. Eng. Comput. 2012, 50, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Martinsen, O.; Grimnes, S. On using single frequency electrical measurements for skin hydration assessment. Innov. Technol. Biol. Méd. 1998, 19, 395–400. [Google Scholar]
- Martinsen, Ø.G.; Grimnes, S. Facts and myths about electrical measurement of stratum corneum hydration state. Dermatology 2001, 202, 87–89. [Google Scholar]
- Martinsen, Ø.G.; Grimnes, S.; Nilsen, J.K.; Tronstad, C.; Jang, W.; Kim, H.; Shin, K.; Naderi, M.; Thielmann, F. Gravimetric method for in vitro calibration of skin hydration measurements. IEEE Trans. Biomed. Eng. 2008, 55, 728–732. [Google Scholar]
- Ishchenko, A.; Shev‘ev, P. Automated complex for multiparameter analysis of the galvanic skin response signal. Biomed. Eng. 1989, 23, 113–117. [Google Scholar] [CrossRef]
- Benedek, M.; Kaernbach, C. Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology 2010, 47, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Breska, A.; Maoz, K.; Ben-Shakhar, G. Interstimulus intervals for skin conductance response measurement. Psychophysiology 2011, 48, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Dawson, M.E.; Schell, A.M.; Filion, D.L. 7 the Electrodermal System. Handb. Psychophysiol. 2007, 159, 200–223. [Google Scholar]
- Christie, M.J. Electrodermal activity in the 1980s: A review. J. R. Soc. Med. 1981, 74, 616. [Google Scholar] [PubMed]
- Greco, A.; Valenza, G.; Lanata, A.; Scilingo, E.P.; Citi, L. cvxEDA: A Convex Optimization Approach to Electrodermal Activity Processing. IEEE Trans. Biomed. Eng. 2016, 63, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Analog Device: AD9833 Low Power, Programmable Waveform Generator. Available online: http://www.analog.com/en/products/rf-microwave/direct-digital-synthesis-modulators/ad9833.html (accessed on 25 July 2016).
- Texas Instrument: MSP430 Ultra-Low-Power Microcontrollers. Available online: http://www.ti.com/lsds/ti/microcontrollers_16-bit_32-bit/msp/overview.page (accessed on 25 July 2016).
- Garrett, E.R. The Bateman function revisited: A critical reevaluation of the quantitative expressions to characterize concentrations in the one compartment body model as a function of time with first-order invasion and first-order elimination. J. Pharmacokinet. Biopharm. 1994, 22, 103–128. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.; Trengove, C.; Johnston, P.; Cooper, T.; August, J.; Gordon, E. Separating individual skin conductance responses in a short interstimulus-interval paradigm. J. Neurosci. Methods 2005, 146, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Benedek, M.; Kaernbach, C. A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 2010, 190, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Greco, A.; Lanata, A.; Valenza, G.; Scilingo, E.P.; Citi, L. Electrodermal activity processing: A convex optimization approach. In Proceedings of the 2014 36th IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 2290–2293.
- cvxEDA. Algorithm for the Analysis of Electrodermal Activity (EDA) Using Convex Optimization. Available online: https://www.mathworks.com/matlabcentral/fileexchange/53326-cvxeda (accessed on 25 July 2016).
- Searle, A.; Kirkup, L. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol. Meas. 2000, 21, 271. [Google Scholar] [CrossRef] [PubMed]
- Kira, Y.; Ogura, T.; Aramaki, S.; Kubo, T.; Hayasida, T.; Hirasawa, Y. Sympathetic skin response evoked by respiratory stimulation as a measure of sympathetic function. Clin. Neurophysiol. 2001, 112, 861–865. [Google Scholar] [CrossRef]
- Lang, P.; Bradley, M.; Cuthbert, B. International affective picture system (IAPS): Digitized photographs, instruction manual and affective ratings. In Technical Report A-6; University of Florida: Gainesville, FL, USA, 2005. [Google Scholar]
- Mørkrid, L.; Qiao, Z.G. Continuous estimation of parameters in skin electrical admittance from simultaneous measurements at two different frequencies. Med. Biol. Eng. Comput. 1988, 26, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Sawan, M.; Laaziri, Y.; Mounaim, F.; Elzayat, E.; Corcos, J.; Elhilali, M. Electrode-Tissues interface: Modeling and experimental validation. Biomed. Mater. 2007, 2, S7. [Google Scholar] [CrossRef] [PubMed]
Feature | Description |
---|---|
Npeak | number of significant SMNA peaks wrw |
AUC | Area under curve of reconstructed phasic signal wrw () |
peak | maximum amplitude of significant peaks of SMNA signal wrw 1 () |
MeanTonic | Mean value of the tonic component within each image time window () |
K-NN (DC) | Neutral | Arousal |
---|---|---|
Neutral | 63.33% | 35.00% |
Arousal | 36.67% | 65.00% |
K-NN (AC 10 Hz) | Neutral | Arousal |
---|---|---|
Neutral | 65.00% | 38.33% |
Arousal | 35.00% | 61.67% |
K-NN (AC 100 Hz) | Neutral | Arousal |
---|---|---|
Neutral | 68.33% | 25.00% |
Arousal | 31.67% | 75.00% |
K-NN (AC 1 kz) | Neutral | Arousal |
---|---|---|
Neutral | 63.33% | 38.33% |
Arousal | 36.67% | 61.67% |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, A.; Lanata, A.; Citi, L.; Vanello, N.; Valenza, G.; Scilingo, E.P. Skin Admittance Measurement for Emotion Recognition: A Study over Frequency Sweep. Electronics 2016, 5, 46. https://doi.org/10.3390/electronics5030046
Greco A, Lanata A, Citi L, Vanello N, Valenza G, Scilingo EP. Skin Admittance Measurement for Emotion Recognition: A Study over Frequency Sweep. Electronics. 2016; 5(3):46. https://doi.org/10.3390/electronics5030046
Chicago/Turabian StyleGreco, Alberto, Antonio Lanata, Luca Citi, Nicola Vanello, Gaetano Valenza, and Enzo Pasquale Scilingo. 2016. "Skin Admittance Measurement for Emotion Recognition: A Study over Frequency Sweep" Electronics 5, no. 3: 46. https://doi.org/10.3390/electronics5030046
APA StyleGreco, A., Lanata, A., Citi, L., Vanello, N., Valenza, G., & Scilingo, E. P. (2016). Skin Admittance Measurement for Emotion Recognition: A Study over Frequency Sweep. Electronics, 5(3), 46. https://doi.org/10.3390/electronics5030046