Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment
Abstract
:1. Introduction
2. CGM Sensor Technologies
2.1. The Early Age of Glucose-Oxidase CGM Sensors
2.2. State-Of-Art Glucose-Oxidase Sensors
2.3. Clinical Impact of CGM Sensors
2.4. Technological Trends and Challenges for the Next Generation of CGM Sensors
3. The Role of CGM in Decision Support Tools
3.1. Bolus Calculator
3.2. Technological Solutions to Improve Bolus Calculators
3.3. Use of CGM Information to Improve Bolus Calculators
3.4. Future Challenges
4. Present Diffusion of CGM Sensors and Future Horizons for Extending Their Field of Use
4.1. Diffusion of CGM Sensors in the Diabetic Population
4.2. Extending the Market of CGM Sensors: New Populations
4.3. Integration of CGM Data with other Data Sources: Towards Big Data Analytics for Precision and Proactive Medicine
5. Conclusions
Author Contributions
Conflicts of Interest
References
- American Diabetes Association. Classification and Diagnosis of Diabetes. Diabetes Care 2017, 40, S11–S24. [Google Scholar]
- World Health Organization (WHO). Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Available online: http://apps.who.int/iris/bitstream/10665/66040/1/WHO_NCD_NCS_99.2.pdf?ua=1 (accessed on 5 September 2017).
- World Health Organization (WHO). Diabetes Facts Sheet. Available online: http://www.who.int/mediacentre/factsheets/fs312/en/ (accessed on 5 September 2017).
- You, W.P.; Henneberg, M. Type 1 diabetes prevalence increasing globally and regionally: The role of natural selection and life expectancy at birth. BMJ Open Diabetes Res. Care 2016, 4, e000161. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.; Kriska, A. Role of physical activity in diabetes management and prevention. J. Am. Diet. Assoc. 2008, 108, S19–S23. [Google Scholar] [CrossRef] [PubMed]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef]
- Clarke, S.F.; Foster, J.R. A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br. J. Biomed. Sci. 2012, 69, 83–93. [Google Scholar]
- Wang, J. Electrochemical glucose biosensors. Chem. Rev. 2008, 108, 814–825. [Google Scholar] [CrossRef]
- Yoo, E.H.; Lee, S.Y. Glucose biosensors: An overview of use in clinical practice. Sensors 2010, 10, 4558–4576. [Google Scholar] [CrossRef] [PubMed]
- Klonoff, D.C. Continuous glucose monitoring. Diabetes Care 2005, 28, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- DeSalvo, D.; Buckingham, B. Continuous glucose monitoring: Current use and future directions. Curr. Diabetes Rep. 2013, 13, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.K.; Potts, R.O.; Ackerman, N.R.; Fermi, S.J.; Tamada, J.A.; Chase, S.P. Correlation of fingerstick blood glucose measurements with the Glucowatch Biographer glucose results in young subjects with type 1 diabetes. Diabetes Care 1999, 22, 1708–1714. [Google Scholar] [CrossRef] [PubMed]
- Gifford, R. Continuous glucose monitoring: 40 years, what we’ve learned and what’s next. ChemPhysChem 2013, 14, 2032–2044. [Google Scholar] [CrossRef] [PubMed]
- Facchinetti, A. Continuous Glucose Monitoring Sensors: Past, Present and Future Algorithmic Challenges. Sensors 2016, 16, 2093. [Google Scholar] [CrossRef] [PubMed]
- Dexcom Inc. On Dexcom G5 FDA Approval. Available online: https://www.dexcom.com/news/1257506247-fda-approves-dexcom-g5%C2%AE-mobile-continuous-glucose-monitoring-system (accessed on 5 September 2017).
- Facchinetti, A.; Sparacino, G.; Cobelli, C. Signal Processing Algorithms Implementing the “Smart Sensor” Concept to Improve Continuous Glucose Monitoring in Diabetes. J. Diabetes Sci. Technol. 2013, 7, 1308–1318. [Google Scholar] [CrossRef] [PubMed]
- Herrero, P.; Pesl, P.; Reddy, M.; Oliver, N.; Georgiou, P.; Toumazou, C. Advanced insulin bolus advisor based on run-to-run control and case-based reasoning. IEEE J. Biomed. Health Inform. 2015, 15, 1087–1096. [Google Scholar]
- Vaddiraju, S.; Burgess, D.J.; Tomazos, I.; Jain, F.C.; Papadimitrakopoulos, F. Technologies for continuous glucose monitoring: Current problems and future promises. J. Diabetes Sci. Technol. 2010, 4, 1540–1562. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Chowdhury, M.K.; Sharma, S.; Sharma, N. Blood glucose monitoring using non invasive optical method: Design limitations and challenges. IJAREEIE 2013, 2, 615–620. [Google Scholar]
- Wang, G.; He, X.; Wang, L.; Gu, A.; Huang, Y.; Fang, B.; Geng, B.; Zhang, X. Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 2013, 180, 161–186. [Google Scholar] [CrossRef]
- Mohammadi, L.B.; Klotzbuecher, T.; Sigloch, S.; Welzel, K.; Göddel, M.; Pieber, T.R.; Schaupp, L. In vivo evaluation of a chip based near infrared sensor for continuous glucose monitoring. Biosens. Bioelectron. 2014, 15, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Mortellaro, M.; DeHennis, A. Performance characterization of an abiotic and fluorescent-based continuous glucose monitoring system in patients with type 1 diabetes. Biosens. Bioelectron. 2014, 61, 227–231. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, X.; Wang, Y.; Duan, X.; Qu, H.; Zhang, H.; Zhang, D.; Pang, W. Microchip based electrochemical-piezoelectric integrated multi-mode sensing system for continuous glucose monitoring. Sens. Actuators B 2016, 223, 83–88. [Google Scholar] [CrossRef]
- Salam, N.A.B.A.; bin Mohd Saad, W.H.; Manap, Z.B.; Salehuddin, F. The evolution of non-invasive blood glucose monitoring system for personal application. JTEC 2016, 8, 59–65. [Google Scholar]
- Rumpler, M.; Mader, J.K.; Fischer, J.P.; Thar, R.; Granger, J.M.; Deliane, F.; Klimant, I.; Aberer, F.; Sinner, F.; Pieber, T.R. First application of a transcutaneous optical single-port glucose monitoring device in patients with type 1 diabetes mellitus. Biosens. Bioelectron. 2017, 88, 240–248. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, X.L.; Li, Z.H.; Zhu, Z.G.; Qian, S.H.; Flewitt, A.J. Current and emerging technology for continuous glucose monitoring. Sensors 2017, 17, 182. [Google Scholar] [CrossRef] [PubMed]
- Medtronic. Picture of the Guardian Real-Time CGM System. Available online: http://www.medtronicdiabetes.co.in/treatment-and-products/guardian-real-time-cgm-system (accessed on 5 September 2017).
- Medtronic. Picture of the Medtronic Enlite Sensor with Dedicated Inserter Device. Available online: https://www.medtronicdiabetes.com/products/enlite-sensor (accessed on 5 September 2017).
- DexCom Inc. Picture of the DexCom G5 Mobile with Share Technology. Available online: https://www.dexcom.com/g5-mobile-cgm (accessed on 5 September 2017).
- Abbott Diabetes Care Inc. Picture of the Abbott FreeStyle Navigator II. Available online: http://www.diabetes.co.uk/cgm/abbott-freestyle-navigator-ii.html (accessed on 5 September 2017).
- Clarke, W.L. The original Clarke error grid analysis (EGA). Diabetes Technol. Ther. 2005, 7, 776–777. [Google Scholar] [CrossRef] [PubMed]
- Mastrototaro, J.; Shin, J.; Marcus, A.; Sulur, G. The accuracy and efficacy of real-time continuous glucose monitoring sensor in patients with type 1 diabetes. Diabetes Technol. Ther. 2008, 10, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Zisser, H.C.; Bailey, T.S.; Schwartz, S.; Ratner, R.E.; Wise, J. Accuracy of the SEVEN continuous glucose monitoring system: Comparison with frequently sampled venous glucose measurements. J. Diabetes Sci. Technol. 2009, 3, 1146–1154. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.L.; Schwartz, S.L.; Brazg, R.L.; Bugler, J.R.; Peyser, T.A.; McGarraugh, G.V. Accuracy of the 5-day FreeStyle Navigator continuous glucose monitoring system. Diabetes Care 2007, 30, 1125–1130. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.S.; Ahmann, A.; Brazg, R.; Christiansen, M.; Garg, S.; Watkins, E.; Welsh, J.B.; Lee, S.W. Accuracy and acceptability of the 6-day Enlite continuous subcutaneous glucose sensor. Diabetes Technol. Ther. 2014, 16, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, M.; Garg, S.K.; Brazg, R.; Bode, B.W.; Bailey, T.S.; Slover, R.H.; Sullivan, A.; Huang, S.; Shin, J.; Lee, S.W.; et al. Accuracy of a Fourth-Generation Subcutaneous Continuous Glucose Sensor. Diabetes Technol. Ther. 2017, 19, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Hakami, H. Medtronic Diabetes on Medtronic Minimed 670 G FDA Approval. Available online: https://www.medtronicdiabetes.com/blog/fda-approves-minimed-670g-system-worlds-first-hybrid-closed-loop-system/ (accessed on 5 September 2017).
- Christiansen, M.; Bailey, T.; Watkins, E.; Liljenquist, D.; Price, D.; Nakamura, K.; Boock, R.; Peyser, T. A new-generation continuous glucose monitoring system: Improved accuracy and reliability compared with a previous-generation system. Diabetes Technol. Ther. 2013, 15, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.S.; Chang, A.; Christiansen, M. Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm. J. Diabetes Sci. Technol. 2014, 9, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Dexcom Inc. On Dexcom G4 Platinum FDA Approval. Available online: https://www.dexcom.com/news/fda-approves-dexcom-g4-platinum-continuous-glucose-monitoring-system-share (accessed on 5 September 2017).
- McGarraugh, G.; Brazg, R.; Weinstein, R. FreeStyle Navigator continuous glucose monitoring system with TRUstart algorithm, a 1-h warm-up time. J. Diabetes Sci. Technol. 2011, 5, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.; Bode, B.W.; Christiansen, M.P.; Klaff, L.J.; Alva, S. The performance and usability of a factory-calibrated flash glucose monitoring system. Diabetes Technol. Ther. 2015, 17, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Sparacino, G.; Facchinetti, A.; Cobelli, C. Smart continuous glucose monitoring sensors: On-line signal processing issues. Sensors 2010, 10, 6751–6772. [Google Scholar] [CrossRef] [PubMed]
- Haviland, N.; Walsh, J.; Roberts, R.; Bailey, T.S. Update on clinical utility of continuous glucose monitoring in type 1 diabetes. Curr. Diabetes Rep. 2016, 16, 115. [Google Scholar] [CrossRef]
- Parkin, C.G.; Graham, C.; Smolskis, J. Continuous glucose monitoring use in type 1 diabetes: Longitudinal analysis demonstrates meaningful improvements in HbA1c and reductions in health care utilization. J. Diabetes Sci. Technol. 2017, 11, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Toschi, E.; Wolpert, H. Utility of continuous glucose monitoring in type 1 and type 2 diabetes. Endocrinol. Metab. Clin. 2016, 45, 895–904. [Google Scholar] [CrossRef] [PubMed]
- Polonsky, W.H.; Hessler, D.; Ruedy, K.J.; Beck, R.W.; DIAMOND Study Group. The impact of continuous glucose monitoring on markers of quality of life in adults with type 1 diabetes: Further findings from the DIAMOND randomized clinical trial. Diabetes Care 2017, 40, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Litchman, M.L.; Allen, N.A. Real-time continuous glucose monitoring facilitates feelings of safety in older adults with type 1 diabetes: A qualitative study. J. Diabetes Sci. Technol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.C.; Foster, N.C.; Maahs, D.M.; Raghinaru, D.; Bergenstal, R.M.; Ahmann, A.J.; Peters, A.L.; Bode, B.W.; Aleppo, G.; Hirsch, I.B.; et al. Real-time continuous glucose monitoring among participants in the T1D exchange clinic registry. Diabetes Care 2014, 37, 2702–2709. [Google Scholar] [CrossRef] [PubMed]
- DexCom Inc. DexCom to Collaborate with the Life Sciences Team at Google on the Development of Breakthrough Technologies to Change the Future of Diabetes Management. Available online: http://www.prnewswire.com/news-releases/dexcom-to-collaborate-with-the-life-sciences-team-at-google-on-the-development-of-breakthrough-technologies-to-change-the-future-of-diabetes-management-300126661.html (accessed on 5 September 2017).
- Ribet, F.; Stemme, G.; Roxhed, N. Ultra-miniaturization of a planar amperometric sensor targeting continuous intradermal glucose monitoring. Biosens. Bioelectron. 2017, 90, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Veettil, S.; Dyer, R.; Peyser, T.; Basu, R. Direct evidence of Acetaminophen interference with subcutaneous glucose sensing in humans: A pilot study. Diabetes Technol. Ther. 2016, 18, S2-43–S2-47. [Google Scholar] [CrossRef] [PubMed]
- Colvin, A.E.; Jiang, H. Increased in vivo stability and functional lifetime of an implantable glucose sensor through platinum catalysis. J. Biomed. Mater. Res. Part A 2013, 101, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Kropff, J.; Choudhary, P.; Neupane, S.; Barnard, K.; Bain, S.C.; Kapitza, C.; Forst, T.; Link, M.; Dehennis, A.; DeVries, J.H. Accuracy and longevity of an implantable continuous glucose sensor in the PRECISE study: A 180-day, prospective, multicenter, pivotal trial. Diabetes Care 2017, 40, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Dehennis, A.; Mortellaro, M.A.; Ioacara, S. Multisite study of an implanted continuous sensor over 90 days in patients with diabetes mellitus. J. Diabetes Sci. Technol. 2015, 9, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Bequette, B.W. Continuous glucose monitoring: Real-time algorithms for calibration, filtering, and alarms. J. Diabetes Sci. Technol. 2010, 4, 404–418. [Google Scholar] [CrossRef] [PubMed]
- Edelman, S.V. Regulation catches up to reality nonadjunctive use of continuous glucose monitoring data. J. Diabetes Sci. Technol. 2017, 1, 160–164. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration. Dexcom G5 Mobile Continuous Glucose Monitoring System. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf12/P120005S041a.pdf (accessed on 5 September 2017).
- Acciaroli, G.; Vettoretti, M.; Facchinetti, A.; Sparacino, G.; Cobelli, C. From two to one per day calibration of Dexcom G4 Platinum by a time-varying day-specific Bayesian prior. Diabetes Technol. Ther. 2016, 18, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Acciaroli, G.; Vettoretti, M.; Facchinetti, A.; Sparacino, G.; Cobelli, C. Reduction of blood glucose measurements to calibrate subcutaneous glucose sensors: A Bayesian multi-day framework. IEEE Trans. Biomed. Eng. 2017. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, S.; Norgaard, K. Bolus Calculators. J. Diabetes Sci. Technol. 2014, 8, 1035–1041. [Google Scholar] [CrossRef] [PubMed]
- Davidson, P.C.; Hebblewhite, H.R.; Steed, R.D.; Bode, B.W. Analysis of guidelines for basal-bolus insulin dosing: Basal insulin, correction factor and carbohydrate-to-insulin ratio. Endocr. Prat. 2008, 14, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Gross, T.M.; Kayne, D.; King, A.; Rother, C.; Juth, S. A bolus calculator is an effective means of controlling postprandial glycemia in patients on insulin pump therapy. Diabetes Technol. Ther. 2003, 10, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Klonoff, D.C. The current status of bolus calculator decision-support software. J. Diabetes Sci. Technol. 2012, 6, 990–994. [Google Scholar] [CrossRef] [PubMed]
- Marden, S.; Thomas, P.W.; Sheppard, Z.A. Poor numeracy skills are associated with glycemic control in type 1 diabetes. Diabetic Med. 2012, 29, 662–669. [Google Scholar] [CrossRef]
- Smart, C.E.; King, B.R.; McElduff, P.; Collins, C.E. In children using intensive insulin therapy, a 20-g variation in carbohydrate amount significantly impacts on postprandial glycaemia. Diabetic Med. 2012, 7, e21–e24. [Google Scholar] [CrossRef] [PubMed]
- Rhyner, D.; Loher, H.; Dehais, J.; Anthimopoulos, M.; Shevchik, S.; Botwey, R.H.; Duke, D.; Stettler, C.; Diem, P.; Mougiakakou, S. Carbohydrate estimation by a mobile phone-based system versus self-estimations of individuals with type 1 diabetes mellitus: A comparative study. J. Med. Internet Res. 2016, 18, e101–e112. [Google Scholar] [CrossRef] [Green Version]
- Bally, L.; Dehais, J.; Nakas, C.T.; Anthimopoulos, M.; Laimer, M.; Rhyner, D.; Rosenberg, G.; Zueger, T.; Diem, P.; Mougiakakou, S.; et al. Carbohydrate estimation supported by the GoCARB system in individuals with type 1 diabetes: A randomized prospective pilot study. Diabetes Care 2016, 40, e6–e7. [Google Scholar] [CrossRef]
- Pańkowska, E.; Ładyżyński, P.; Foltyński, P.; Mazurczak, K. A randomized controlled study of an insulin dosing application that uses recognition and meal bolus estimations. J. Diabetes Sci. Technol. 2017, 11, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Herrero, P.; Pesl, P.; Bondia, J.; Reddy, M.; Oliver, N.; Georgiou, P.; Toumazou, C. Method for automatic adjustment of an insulin bolus calculator: In silico robustness evaluation under intra-day variability. Comput. Methods Programs Biomed. 2015, 119, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kovatchev, B.P.; Breton, M.; Dalla Man, C.; Cobelli, C. In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes. J. Diabetes Sci. Technol. 2009, 3, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, G. Practical CGM: Improving Patient Outcomes through Continuous Glucose Monitoring; American Diabetes Association: Alexandria, WV, USA, 2015. [Google Scholar]
- Buckingham, B. Use of the direcnet applied treatment algorithm (data) for diabetes management with a real-time continuous glucose monitor (the FreeStyle Navigator). Pediatr. Diabetes 2008, 9, 142–147. [Google Scholar] [PubMed]
- Senseonics. Picture of the Senseonics Eversense Continuous Glucose Monitoring System. Available online: https://ous.eversensediabetes.com/?whichSite=ous (accessed on 5 September 2017).
- The Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med. 2008, 359, 1464–1476. [Google Scholar]
- Garg, S.; Zisser, H.; Schwartz, S.; Bailey, T.; Kaplan, R.; Ellis, S.; Jovanovic, L. Improvement in glycemic excursions with a transcutaneous, real-time continuous glucose sensor: A randomized controlled trial. Diabetes Care 2006, 29, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.S.; O’Grady, M.; Basu, A.; Winn, A.; John, P.; Lee, J.; Meltzer, D.; Kollman, C.; Laffel, L.; Tamborlane, W.; et al. The cost-effectiveness of continuous glucose monitoring in type 1 diabetes. Diabetes Care 2010, 33, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Roze, S.; Smith-Palmer, J.; Valentine, W.J.; Cook, M.; Jethwa, M.; de Portu, S.; Pickup, J. Long-term health economic benefits of sensor-augmented pump therapy versus continuous subcutaneous insulin infusion alone in type 1 diabetes: A UK perspective. J. Med. Econ. 2016, 19, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.M.; Foster, N.C.; Beck, R.W.; Bergenstal, R.M.; DuBose, S.N.; DiMeglio, L.A.; Maahs, D.M.; Tamborlane, W.V.; T1D Exchange Clinic Network. Current state of type 1 diabetes treatment in the U.S.: Updated data from the T1D Exchange clinic registry. Diabetes Care 2015, 38, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, L.; DeVries, J.H. Reimbursement for continuous glucose monitoring. Diabetes Technol. Ther. 2017, 18, S2-48–S2-52. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, L.; Franc, S.; Phillip, M.; Battelino, T.; Ampudia-Blasco, F.J.; Bolinder, J.; Diem, P.; Pickup, J.; Hans Devries, J. Reimbursement for continuous glucose monitoring: A European view. J. Diabetes Sci. Technol. 2012, 6, 1498–1502. [Google Scholar] [CrossRef] [PubMed]
- DexCom Inc. Medicare Announces Criteria Covering Dexcom G5 Mobile CGM for All People with Diabetes on Intensive Insulin Therapy. Available online: https://www.dexcom.com/news/medicare-announces-criteria-covering-dexcom-g5-mobile-cgm-for-all-people-with-diabetes-on-intensive-insulin (accessed on 5 September 2017).
- Santos-Longhurst, A.; Pletcher, P. Type 2 Diabetes Prevalence Statistics. Available online: http://www.healthline.com/health/type-2-diabetes/statistics#1 (accessed on 5 September 2017).
- Donovan, P.J.; McIntyre, H.D. Drugs for gestational diabetes. Aust. Prescr. 2010, 33, 141–144. [Google Scholar] [CrossRef]
- Ferrara, A. Increasing Prevalence of Gestational Diabetes Mellitus. Diabetes Care 2007, 30, S141–S146. [Google Scholar] [CrossRef] [PubMed]
- Abbott Diabetes Care Inc. Real-World Data from Abbott’s FreeStyle® Libre Show Association between Higher Frequency of Glucose Monitoring and Improved Glucose Control for People with Diabetes. Available online: http://abbott.mediaroom.com/2017-02-15-Real-World-Data-from-Abbotts-FreeStyle-R-Libre-Show-Association-Between-Higher-Frequency-of-Glucose-Monitoring-and-Improved-Glucose-Control-for-People-with-Diabetes (accessed on 5 September 2017).
- Medtronic. Medtronic and Qualcomm Collaborate to Aim to Improve Care and Health Outcomes for People with Type 2 Diabetes. Available online: http://newsroom.medtronic.com/phoenix.zhtml?c=251324&p=irol-newsArticle&ID=2172203 (accessed on 5 September 2017).
- Glucovation Home Page. Available online: http://glucovation.com (accessed on 5 September 2017).
- SugarBEAT® Home Page. Available online: http://sugarbeat.com (accessed on 5 September 2017).
- Minimed® Connect App Home Page. Available online: https://www.medtronicdiabetes.com/products/minimed-connect (accessed on 5 September 2017).
- Klonoff, D.C. The current status of mHealth for diabetes: Will it be the next big thing? J. Diabetes Sci. Technol. 2013, 7, 749–758. [Google Scholar] [CrossRef] [PubMed]
- El-Gayar, O.; Timsina, P.; Nawar, N.; Eid, W. Mobile applications for diabetes self-management: Status and potential. J. Diabetes Sci. Technol. 2013, 7, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Arnhold, M.; Quade, M.; Kirch, W. Mobile applications for diabetics: A systematic review and expert-based usability evaluation considering the special requirements of diabetes patients age 50 years or older. J. Med. Internet Res. 2014, 16, e104. [Google Scholar] [CrossRef]
- Brzan, P.P.; Rotman, E.; Pajnkihar, M.; Klanjsek, P. Mobile applications for control and self management of diabetes: A systematic review. J. Med. Syst. 2016, 40, 210. [Google Scholar] [CrossRef]
- Schatz, B.R. National surveys of population health: Big data analytics for mobile health monitors. Big Data 2015, 3, 219–229. [Google Scholar] [CrossRef]
- Fitbit Home Page. Available online: https://www.fitbit.com/home (accessed on 5 September 2017).
- Apple Watch Home Page. Available online: https://www.apple.com/apple-watch-series-2/ (accessed on 5 September 2017).
- Castano, L.M.; Flatau, A.B. Smart fabric sensors and e-textile technologies: A review. Smart Mater. Struct. 2014, 23, 053001. [Google Scholar] [CrossRef]
- Sawh, M. The Best Smart Clothing: From Biometric Shirts to Contactless Payment Jackets. Available online: https://www.wareable.com/smart-clothing/best-smart-clothing (accessed on 5 September 2017).
- Tricoli, A.; Nasiri, N.; Saya, D. Wearable and miniaturized sensor technologies for personalized and preventive medicine. Adv. Funct. Mater. 2017, 27, 1605271. [Google Scholar] [CrossRef]
- Bellazzi, R.; Dagliati, A.; Sacchi, L.; Segagni, D. Big data technologies: New opportunities for diabetes management. J. Diabetes Sci. Technol. 2015, 9, 1119–1125. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Kawachi, I. Diets and health: How food decisions are shaped by biology, economics, geography, and social interactions. Big Data 2015, 3, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Cichosz, S.L.; Johansen, M.D.; Hejlesen, O. Toward big data analytics: Review of predictive models in management of diabetes and its complications. J. Diabetes Sci. Technol. 2016, 10, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Kavakiotis, I.; Tsave, O.; Salifoglou, A.; Maglaveras, N.; Vlahavas, I.; Chouvarda, I. Machine learning and data mining methods in diabetes research. Comput. Struct. Biotechnol. J. 2017, 15, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Demchenko, Y.; De Laat, C.; Membrey, P. Defining architecture components of the Big Data Ecosystem. In International Conference on CTS; IEEE: Piscataway, NJ, USA, 2014; pp. 104–112. [Google Scholar]
Company | Sensor System | Accuracy (MARD) | Features | Requirements |
---|---|---|---|---|
Dexcom | G4 Platinum | 13% [38], updated to 9% [39] in 2014 | 7-day lifetime, trend arrows, rate-of-change alerts, hyper and hypo alarms, remote monitoring (Share technology from 2015) | Calibration recommended at least every 12 h, approved only as adjuntive deviceapproved only as adjunctive device |
G5 Mobile | 9% [39] | 7-day lifetime, trend arrows, rate-of-change alerts, hyper and hypo alarms, remote monitoring, direct wireless communication with smart devices (up to 5 devices) | Calibration recommended at least every 12 h | |
Medtronic | Enlite Sensor | 13.6% [35] | 6-day lifetime, trend arrows, rate-of-change alerts, hyper and hypo alarms, direct integration with Medtronic insulin pumps | Calibration recommended at least every 12 h, approved only as adjunctive device |
Guardian Sensor 3 | 10.6% in the abdomen, 9.1% in the arm [36] | 7-day lifetime, trend arrows, rate-of-change alerts, hyper and hypo alarms, direct integration with Medtronic insulin pumps | Calibration recommended at least every 12 h, approved only as adjunctive device | |
Abbott | Navigator II | 14.5% [41] | 5-day lifetime, trend arrows, rate-of-change alerts, hyper and hypo alarms | Calibration recommended 2, 10, 24, and 72 h after sensor insertion, approved only in some European countries as adjunctive device |
FreeStyle Libre | 11.4% [42] | 14-day lifetime, trend arrows, communication with a smart device | To read glucose values the sensor needs to be scanned with the receiver or the smartphone, not FDA approved yet | |
Senseonics | Eversense | 11.4% [43] | 90-day lifetime, trend arrows, rate-of-change alerts, hyper and hypo alarms, communication with a smart device | The sensor needs to be inserted and removed in doctor’s office, approved as adjunctive device in Europe only |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cappon, G.; Acciaroli, G.; Vettoretti, M.; Facchinetti, A.; Sparacino, G. Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment. Electronics 2017, 6, 65. https://doi.org/10.3390/electronics6030065
Cappon G, Acciaroli G, Vettoretti M, Facchinetti A, Sparacino G. Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment. Electronics. 2017; 6(3):65. https://doi.org/10.3390/electronics6030065
Chicago/Turabian StyleCappon, Giacomo, Giada Acciaroli, Martina Vettoretti, Andrea Facchinetti, and Giovanni Sparacino. 2017. "Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment" Electronics 6, no. 3: 65. https://doi.org/10.3390/electronics6030065
APA StyleCappon, G., Acciaroli, G., Vettoretti, M., Facchinetti, A., & Sparacino, G. (2017). Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment. Electronics, 6(3), 65. https://doi.org/10.3390/electronics6030065