A Computationally Efficient Mean Sound Speed Estimation Method Based on an Evaluation of Focusing Quality for Medical Ultrasound Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Minimum Average Sum of Absolute Difference (MASAD)
2.2. Experiment Setup and Evaluation Metrics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Song, T.; Park, S. A new digital phased array system for dynamic focusing and steering with reduced sampling rate. Ultrason. Imaging 1990, 12, 1–16. [Google Scholar] [CrossRef]
- Steinberg, B.D. Digital beamforming in ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1992, 39, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Mucci, R. A Comparison of Efficient Beamforming Algorithms. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1984, 32, 548–558. [Google Scholar] [CrossRef]
- Anderson, M.E.; McKeag, M.S.; Trahey, G.E. The impact of sound speed errors on medical ultrasound imaging. J. Acoust. Soc. Am. 2000, 107, 3540–3548. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, K.; Arai, S.; Namekawa, K.; Akiyama, I. Sound Velocity Estimation and Beamform Correction by Simultaneous Multimodality Imaging with Ultrasound and Magnetic Resonance. Appl. Sci. 2018, 8, 2133. [Google Scholar] [CrossRef]
- Flax, S.W.; O’Donnell, M. Phase-aberration correction using signals from point reflectors and diffuse scatterers: Basic principles. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 35, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Karaman, M.; Atalar, A.; Koymen, H.; O’Donnell, M. A phase aberration correction method for ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1993, 40, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Li, P.C.; O’Donnell, M. Phase aberration correction on two-dimensional conformal arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1995, 42, 73–82. [Google Scholar]
- Behar, V. Techniques for phase correction in coherent ultrasound imaging systems. Ultrasonics 2002, 39, 603–610. [Google Scholar] [CrossRef]
- Nock, L.; Trahey, G.E.; Smith, S.W. Phase aberration correction in medical ultrasound using speckle brightness as a quality factor. J. Acoust. Soc. Am. 1989, 85, 1819–1833. [Google Scholar] [CrossRef]
- Mozumi, M.; Hasegawa, H. Adaptive beamformer combined with phase coherence weighting applied to ultrafast ultrasound. Appl. Sci. 2018, 8, 204. [Google Scholar] [CrossRef]
- Ziksari, M.S.; Asl, B.M. Combined phase screen aberration correction and minimum variance beamforming in medical ultrasound. Ultrasonics 2017, 75, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Yen, J.T. Synergistic enhancements of ultrasound image contrast with a combination of phase aberration correction and dual apodization with cross-correlation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 2089–2101. [Google Scholar] [PubMed]
- Cho, M.H.; Kang, L.H.; Kim, J.S.; Lee, S.Y. An efficient sound speed estimation method to enhance image resolution in ultrasound imaging. Ultrasonics 2009, 49, 774–778. [Google Scholar] [CrossRef] [PubMed]
- Ophir, J. Estimation of speed of ultrasound propagation in biological tissues: A beam-tracking method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1986, 33, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.E.; Ophir, J.; Wilson, L.S.; Chen, C.F. Pulse-echo Ultrasound Speed Measurements: Progress and Prospects. Ultrasound Med. Biol. 1991, 17, 633–646. [Google Scholar] [CrossRef]
- Krucker, J.F.; Fowlkes, J.B.; Carson, P.L. Sound speed estimation using automatic ultrasound image registration. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 1095–1106. [Google Scholar] [CrossRef]
- Anderson, M.E.; Trahey, G.E. The direct estimation of sound speed using pulse–echo ultrasound. J. Acoust. Soc. Am. 1998, 104, 3099–3106. [Google Scholar] [CrossRef]
- Napolitano, D.; Chou, C.H.; McLaughlin, G.; Ji, T.L.; Mo, L.; DeBusschere, D.; Steins, R. Sound speed correction in ultrasound imaging. Ultrasonics 2006, 44, e43–e46. [Google Scholar] [CrossRef]
- Yoon, C.; Lee, Y.; Chang, J.; Song, T.; Yoo, Y. In vitro estimation of mean sound speed based on minimum average phase variance in medical ultrasound imaging. Ultrasonics 2011, 51, 795–802. [Google Scholar] [CrossRef]
- Kim, P.; Kang, J. A Pseudo-Dynamic Delay Calculation Using Optimal Zone Segmentation for Ultra-Compact Ultrasound Imaging Systems. Electronics 2019, 8, 242. [Google Scholar] [CrossRef]
- Cho, J.; Lee, J.; Song, J.; Kim, Y.; Song, T. A fractional filter-based beamformer architecture using postfiltering approach to minimize hardware complexity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2007, 54, 1076–1079. [Google Scholar] [CrossRef]
- Kozmin, K.; Johansson, J.; Delsing, J. Level-crossing ADC performance evaluation toward ultrasound application. IEEE Trans. Circuits Syst. I Regul. Pap. 2008, 56, 1708–1719. [Google Scholar] [CrossRef]
- Del Grosso, V.A.; Mader, C.W. Speed of sound in pure water. J. Acoust. Soc. Am. 1972, 52, 1442–1446. [Google Scholar] [CrossRef]
- Bilaniuk, N.; Wong, G.S. Speed of sound in pure water as a function of temperature. J. Acoust. Soc. Am. 1993, 93, 1609–1612. [Google Scholar] [CrossRef]
- Üstüner, K.F.; Holley, G.L. Ultrasound Imaging System Performance Assessment—AAPM. Available online: http://www.aapm.org/meetings/03AM/pdf/9905-9858.pdf (accessed on 9 August 2003).
- Kang, J.; Yoon, C.; Lee, J.; Kye, S.; Lee, Y.; Chang, J.; Kim, G.; Yoo, Y.; Song, T. A system-on-chip solution for point-of-care ultrasound imaging systems: Architecture and ASIC implementation. IEEE Trans. Biomed. Circuits Syst. 2015, 10, 412–423. [Google Scholar] [CrossRef]
- Bamber, J.C.; Hill, C.R. Acoustic properties of normal and cancerous human liver—I. Dependence on pathological condition. Ultrasound Med. Biol. 1981, 7, 121–133. [Google Scholar] [CrossRef]
Hardware Resource | Conventional DRB | Proposed DRB with MASAD |
---|---|---|
Slices | 24,659 (36%) | 24,722 (36%) |
Flip Flops | 21,641 (16%) | 21,736 (16%) |
Input LUTs | 28,994 (21%) | 29,083 (21%) |
FIFO16/RAMB16s | 144 (50%) | 144 (50%) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Yoo, Y.; Yoon, C.; Song, T.-k. A Computationally Efficient Mean Sound Speed Estimation Method Based on an Evaluation of Focusing Quality for Medical Ultrasound Imaging. Electronics 2019, 8, 1368. https://doi.org/10.3390/electronics8111368
Lee J, Yoo Y, Yoon C, Song T-k. A Computationally Efficient Mean Sound Speed Estimation Method Based on an Evaluation of Focusing Quality for Medical Ultrasound Imaging. Electronics. 2019; 8(11):1368. https://doi.org/10.3390/electronics8111368
Chicago/Turabian StyleLee, Jaejin, Yangmo Yoo, Changhan Yoon, and Tai-kyong Song. 2019. "A Computationally Efficient Mean Sound Speed Estimation Method Based on an Evaluation of Focusing Quality for Medical Ultrasound Imaging" Electronics 8, no. 11: 1368. https://doi.org/10.3390/electronics8111368
APA StyleLee, J., Yoo, Y., Yoon, C., & Song, T. -k. (2019). A Computationally Efficient Mean Sound Speed Estimation Method Based on an Evaluation of Focusing Quality for Medical Ultrasound Imaging. Electronics, 8(11), 1368. https://doi.org/10.3390/electronics8111368