Planar Textile Off-Body Communication Antennas: A Survey
Abstract
:1. Introduction
2. Antenna Designs and Performance
2.1. Feeding Techniques
2.1.1. Coaxially Fed Antennas
2.1.2. Multilayer Feeding Techniques
2.1.3. Microstrip Line Feeding Techniques
2.1.4. Coplanar Waveguide Fed Antennas
2.2. Antenna Topologies
2.2.1. Microstrip Antenna
2.2.2. Planar Inverted F-Antenna
2.2.3. Substrate Integrated Waveguide Antenna
2.3. EM Antenna Performance
2.4. Conclusions
3. Antenna Construction Techniques
4. Antenna Measurements under Diverse Conditions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roh, E.; Hwang, B.U.; Kim, D.; Kim, B.Y.; Lee, N.E. Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human–Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. ACS Nano 2015, 9, 6252–6261. [Google Scholar] [CrossRef] [PubMed]
- Gong, S.; Lai, D.T.H.; Su, B.; Si, K.J.; Ma, Z.; Yap, L.W.; Guo, P.; Cheng, W. Highly Stretchy Black Gold E-Skin Nanopatches as Highly Sensitive Wearable Biomedical Sensors. Adv. Electron. Mater. 2015, 1, 1400063. [Google Scholar] [CrossRef]
- Lemey, S.; Declercq, F.; Rogier, H. Dual-Band Substrate Integrated Waveguide Textile Antenna With Integrated Solar Harvester. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Gachagan, A.; Hayward, G.; Banks, R. A flexible piezoelectric transducer design for efficient generation and reception of ultrasonic Lamb waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2005, 52, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, R.; Carvalho, N.B.; Pinho, P.; Loss, C.; Salvado, R. Textile antenna for electromagnetic energy harvesting for GSM900 and DCS1800 bands. In Proceedings of the 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Lake Buena Vista, FL, USA, 7–12 July 2013; pp. 1206–1207. [Google Scholar] [CrossRef]
- Yan, S.; Soh, P.J.; Vandenbosch, G.A.E. Low-Profile Dual-Band Textile Antenna With Artificial Magnetic Conductor Plane. IEEE Trans. Antennas Propag. 2014, 62, 6487–6490. [Google Scholar] [CrossRef]
- Samal, P.B.; Soh, P.J.; Vandenbosch, G.A.E. UWB All-Textile Antenna With Full Ground Plane for Off-Body WBAN Communications. IEEE Trans. Antennas Propag. 2014, 62, 102–108. [Google Scholar] [CrossRef]
- Luo, G.Q.; Hu, Z.F.; Li, W.J.; Zhang, X.H.; Sun, L.L.; Zheng, J.F. Bandwidth-Enhanced Low-Profile Cavity-Backed Slot Antenna by Using Hybrid SIW Cavity Modes. IEEE Trans. Antennas Propag. 2012, 60, 1698–1704. [Google Scholar] [CrossRef]
- Dong, Y.; Itoh, T. Miniaturized Substrate Integrated Waveguide Slot Antennas Based on Negative Order Resonance. IEEE Trans. Antennas Propag. 2010, 58, 3856–3864. [Google Scholar] [CrossRef]
- Jin, C.; Li, R.; Alphones, A.; Bao, X. Quarter-Mode Substrate Integrated Waveguide and Its Application to Antennas Design. IEEE Trans. Antennas Propag. 2013, 61, 2921–2928. [Google Scholar] [CrossRef]
- Liu, N.; Zhu, L.; Choi, W.; Zhang, X. Wideband Shorted Patch Antenna Under Radiation of Dual-Resonant Modes. IEEE Trans. Antennas Propag. 2017, 65, 2789–2796. [Google Scholar] [CrossRef]
- Jin, J.Y.; Liao, S.; Xue, Q. Design of Filtering-Radiating Patch Antennas With Tunable Radiation Nulls for High Selectivity. IEEE Trans. Antennas Propag. 2018, 66, 2125–2130. [Google Scholar] [CrossRef]
- Sun, W.; Li, Y.; Zhang, Z.; Chen, P. Low-Profile and Wideband Microstrip Antenna Using Quasi-Periodic Aperture and Slot-to-CPW Transition. IEEE Trans. Antennas Propag. 2019, 67, 632–637. [Google Scholar] [CrossRef]
- Yang, G.; Li, J.; Cao, B.; Wei, D.; Zhou, S.; Deng, J. A Compact Reconfigurable Microstrip Antenna With Multidirectional Beam and Multipolarization. IEEE Trans. Antennas Propag. 2019, 67, 1358–1363. [Google Scholar] [CrossRef]
- Mitha, T.; Pour, M. Investigation of Dominant Transverse Electric Mode in Microstrip Patch Antennas. IEEE Trans. Antennas Propag. 2019, 67, 643–648. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.; Sun, W.; Zhang, Z.; Chen, P. Dual Linearly Polarized Microstrip Antenna Using a Slot-Loaded TM50 Mode. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2344–2348. [Google Scholar] [CrossRef]
- An, W.; Li, Y.; Fu, H.; Ma, J.; Chen, W.; Feng, B. Low-Profile and Wideband Microstrip Antenna With Stable Gain for 5G Wireless Applications. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 621–624. [Google Scholar] [CrossRef]
- Saghati, A.P.; Saghati, A.P.; Entesari, K. An Ultra-Miniature SIW Cavity-Backed Slot Antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 313–316. [Google Scholar] [CrossRef]
- Luo, G.Q.; Hu, Z.F.; Dong, L.X.; Sun, L.L. Planar Slot Antenna Backed by Substrate Integrated Waveguide Cavity. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 236–239. [Google Scholar] [CrossRef]
- Luo, G.Q.; Hu, Z.F.; Liang, Y.; Yu, L.Y.; Sun, L.L. Development of Low Profile Cavity Backed Crossed Slot Antennas for Planar Integration. IEEE Trans. Antennas Propag. 2009, 57, 2972–2979. [Google Scholar] [CrossRef]
- Nguyen-Trong, N.; Piotrowski, A.; Hall, L.; Fumeaux, C. A Frequency- and Polarization-Reconfigurable Circular Cavity Antenna. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 999–1002. [Google Scholar] [CrossRef]
- Asadallah, F.A.; Costantine, J.; Tawk, Y. A Multiband Compact Reconfigurable PIFA Based on Nested Slots. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 331–334. [Google Scholar] [CrossRef]
- Pour, M.; Henley, M.; Young, A.; Iqbal, Z. Cross-Polarization Reduction in Offset Reflector Antennas With Dual-Mode Microstrip Primary Feeds. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 926–930. [Google Scholar] [CrossRef]
- Radavaram, S.; Pour, M. Wideband Radiation Reconfigurable Microstrip Patch Antenna Loaded With Two Inverted U-Slots. IEEE Trans. Antennas Propag. 2019, 67, 1501–1508. [Google Scholar] [CrossRef]
- Nguyen-Trong, N.; Fumeaux, C. Tuning Range and Efficiency Optimization of a Frequency-Reconfigurable Patch Antenna. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 150–154. [Google Scholar] [CrossRef]
- Li, W.; Li, P.; Zhou, J.; Liu, Q.H. Control of Higher Order Harmonics and Spurious Modes for Microstrip Patch Antennas. IEEE Access 2018, 6, 34158–34165. [Google Scholar] [CrossRef]
- Inserra, D.; Wen, G.; Hu, W. Sequentially Rotated Circular Antenna Array With Curved PIFA and Series Feed Network. IEEE Trans. Antennas Propag. 2018, 66, 5849–5858. [Google Scholar] [CrossRef]
- Shao, Z.; Zhang, Y.P. Miniaturization of Differentially-Driven Microstrip Planar Inverted F Antenna. IEEE Trans. Antennas Propag. 2019, 67, 1280–1283. [Google Scholar] [CrossRef]
- Liu, D.Q.; Zhang, M.; Luo, H.J.; Wen, H.L.; Wang, J. Dual-Band Platform-Free PIFA for 5G MIMO Application of Mobile Devices. IEEE Trans. Antennas Propag. 2018, 66, 6328–6333. [Google Scholar] [CrossRef]
- Liu, J.; Jackson, D.R.; Long, Y. Substrate Integrated Waveguide (SIW) Leaky-Wave Antenna With Transverse Slots. IEEE Trans. Antennas Propag. 2012, 60, 20–29. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Yang, G.; Cao, B.; Zhang, Z. A Polarization-Reconfigurable High-Gain Microstrip Antenna. IEEE Trans. Antennas Propag. 2019, 67, 3461–3466. [Google Scholar] [CrossRef]
- Grilo, M.; Correra, F.S. Rectangular Patch Antenna on Textile Substrate Fed by Proximity Coupling. J. Microw. Optoelectron. Electromagn. Appl. (JMOe) 2015, 14, 103–112. [Google Scholar]
- Haagenson, T.; Noghanian, S.; de Leon, P.; hsiang Chang, Y. Textile Antennas for Spacesuit Applications: Design, simulation, manufacturing, and testing of textile patch antennas for spacesuit applications. IEEE Antennas Propag. Mag. 2015, 57, 64–73. [Google Scholar] [CrossRef]
- Virili, M.; Rogier, H.; Alimenti, F.; Mezzanotte, P.; Roselli, L. Wearable Textile Antenna Magnetically Coupled to Flexible Active Electronic Circuits. IEEE Antennas Wirel. Propag. Lett. 2014, 13, 209–212. [Google Scholar] [CrossRef]
- Sanjari, H.R.; Merati, A.A.; Varkiani, S.M.H.; Tavakoli, A. A study on the effect of compressive strain on the resonance frequency of rectangular textile patch antenna: Elastic and isotropic model. J. Text. Inst. 2014, 105, 156–162. [Google Scholar] [CrossRef]
- Hussin, E.; Soh, P.; Jamlos, M.; Lago, H.; Al-Hadi, A.; Rahiman, M. A wideband textile antenna with a ring-slotted AMC plane. Appl. Phys. A 2017, 123, 46. [Google Scholar] [CrossRef]
- Yan, S.; Soh, P.J.; Vandenbosch, G.A.E. Compact All-Textile Dual-Band Antenna Loaded With Metamaterial-Inspired Structure. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1486–1489. [Google Scholar] [CrossRef]
- Virkki, J.; Wei, Z.; Liu, A.; Ukkonen, L.; Björninen, T. Wearable Passive E-Textile UHF RFID Tag Based on a Slotted Patch Antenna with Sewn Ground and Microchip Interconnections. Int. J. Antennas Propag. 2017, 2017, 3476017. [Google Scholar] [CrossRef]
- Paraskevopoulos, A.; de Sousa Fonseca, D.; Seager, R.D.; Whittow, W.G.; Vardaxoglou, J.C.; Alexandridis, A.A. Higher-mode textile patch antenna with embroidered vias for on-body communication. IET Microw. Antennas Propag. 2016, 10, 802–807. [Google Scholar] [CrossRef]
- Poffelie, L.A.Y.; Soh, P.J.; Yan, S.; Vandenbosch, G.A.E. A High-Fidelity All-Textile UWB Antenna With Low Back Radiation for Off-Body WBAN Applications. IEEE Trans. Antennas Propag. 2016, 64, 757–760. [Google Scholar] [CrossRef]
- Tak, J.; Choi, J. An All-Textile Louis Vuitton Logo Antenna. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1211–1214. [Google Scholar] [CrossRef]
- Chen, S.J.; Kaufmann, T.; Ranasinghe, D.C.; Fumeaux, C. A Modular Textile Antenna Design Using Snap-on Buttons for Wearable Applications. IEEE Trans. Antennas Propag. 2016, 64, 894–903. [Google Scholar] [CrossRef] [Green Version]
- Lago, H.; Soh, P.; Jamlos, M.; Shohaimi, N.; Yan, S.; Vandenbosch, G. Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications. Appl. Phys. A 2016, 122, 1059. [Google Scholar] [CrossRef]
- Agneessens, S.; Rogier, H. Compact Half Diamond Dual-Band Textile HMSIW On-Body Antenna. IEEE Trans. Antennas Propag. 2014, 62, 2374–2381. [Google Scholar] [CrossRef] [Green Version]
- Agneessens, S.; Lemey, S.; Vervust, T.; Rogier, H. Wearable, Small, and Robust: The Circular Quarter-Mode Textile Antenna. IEEE Antennas Wirel. Propag. Lett. 2015, 14, 1482–1485. [Google Scholar] [CrossRef]
- Yan, S.; Soh, P.J.; Vandenbosch, G.A.E. Dual-Band Textile MIMO Antenna Based on Substrate-Integrated Waveguide (SIW) Technology. IEEE Trans. Antennas Propag. 2015, 63, 4640–4647. [Google Scholar] [CrossRef]
- Soh, P.J.; Vandenbosch, G.A.E.; Ooi, S.L.; Rais, N.H.M. Design of a Broadband All-Textile Slotted PIFA. IEEE Trans. Antennas Propag. 2012, 60, 379–384. [Google Scholar] [CrossRef]
- Soh, P.J.; Boyes, S.; Vandenbosch, G.; Huang, Y.; Liam Ooi, S. On-Body Characterization of Dual-Band All-Textile PIFAs. Prog. Electromagn. Res. 2012, 129, 517–539. [Google Scholar] [CrossRef]
- Grilo, M.; Seko, M.H.; Correra, F.S. Wearable textile patch antenna fed by proximity coupling with increased bandwidth. Microw. Opt. Technol. Lett. 2016, 58, 1906–1912. [Google Scholar] [CrossRef]
- Aun, N.; Soh, P.; Jamlos, M.; Lago, H.; Al-Hadi, A. A wideband rectangular-ring textile antenna integrated with corner-notched artificial magnetic conductor (AMC) plane. Appl. Phys. A 2017, 123, 1–6. [Google Scholar] [CrossRef]
- Hong, Y.; Tak, J.; Choi, J. An All-Textile SIW Cavity-Backed Circular Ring-Slot Antenna for WBAN Applications. IEEE Antennas Wirel. Propag. Lett. 2016, 15, 1995–1999. [Google Scholar] [CrossRef]
- Simorangkir, R.B.V.B.; Yang, Y.; Matekovits, L.; Esselle, K.P. Dual-Band Dual-Mode Textile Antenna on Substrate for Body-Centric Communications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 677–680. [Google Scholar] [CrossRef]
- Lajevardi, M.E.; Kamyab, M. Ultraminiaturized Metamaterial-Inspired SIW Textile Antenna for Off-Body Applications. IEEE Antennas Wirel. Propag. Lett. 2017, 16, 3155–3158. [Google Scholar] [CrossRef]
- Tak, J.; Hong, Y.; Choi, J. Textile antenna with EBG structure for body surface wave enhancement. Electron. Lett. 2015, 51, 1131–1132. [Google Scholar] [CrossRef]
- Baelen, D.V.; Lemey, S.; Verhaevert, J.; Rogier, H. A Novel Manufacturing Process for Compact, Low-Weight and Flexible Ultra-Wideband Cavity Backed Textile Antennas. Materials 2018, 11, 67. [Google Scholar] [CrossRef] [PubMed]
- Tak, J.; Lee, S.; Choi, J. All-textile higher order mode circular patch antenna for on-body to on-body communications. IET Microw. Antennas Propag. 2015, 9, 576–584. [Google Scholar] [CrossRef]
- Rajo-Iglesias, E.; Gallego-Gallego, I.; Inclan-Sanchez, L.; Quevedo-Teruel, O. Textile Soft Surface for Back Radiation Reduction in Bent Wearable Antennas. IEEE Trans. Antennas Propag. 2014, 62, 3873–3878. [Google Scholar] [CrossRef]
- Loss, C.; Gonçalves, R.; Pinho, P.; Salvado, R. Influence of some structural parameters on the dielectric behavior of materials for textile antennas. Text. Res. J. 2019, 89, 1131–1143. [Google Scholar] [CrossRef]
- Xu, H.; Jackson, D.R.; Williams, J.T. Comparison of models for the probe inductance for a parallel-plate waveguide and a microstrip patch. IEEE Trans. Antennas Propag. 2005, 53, 3229–3235. [Google Scholar] [CrossRef]
- Duffy, S.M. An enhanced bandwidth design technique for electromagnetically coupled microstrip antennas. IEEE Trans. Antennas Propag. 2000, 48, 161–164. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, S.; Vandenbosch, G.A.E. A Miniature Feeding Network for Aperture-Coupled Wearable Antennas. IEEE Trans. Antennas Propag. 2017, 65, 2650–2654. [Google Scholar] [CrossRef]
- Hertleer, C.; Tronquo, A.; Rogier, H.; Vallozzi, L.; Langenhove, L.V. Aperture-Coupled Patch Antenna for Integration Into Wearable Textile Systems. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 392–395. [Google Scholar] [CrossRef] [Green Version]
- Del-Rio-Ruiz, R.; Lopez-Garde, J.; Macon, J.L. Design and Performance Analysis of a Purely Textile Proximity Fed Microstrip Patch Antenna for On-Body Wireless Communications. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 1293–1294. [Google Scholar] [CrossRef]
- Shakhirul, M.S.; Jusoh, M.; Sahadah, A.; Nor, C.M.; Rahim, H.A. Embroidered wearable textile antenna on bending and wet performances for UWB reception. Microw. Opt. Technol. Lett. 2014, 56, 2158–2163. [Google Scholar] [CrossRef]
- Sundarsingh, E.F.; Ramalingam, V.S.; Kanagasabai, M. Statistical analysis on the bandwidth of a dual frequency textile antenna. IET Microw. Antennas Propag. 2015, 9, 1683–1690. [Google Scholar] [CrossRef]
- Koski, K.; Vena, A.; Sydanheimo, L.; Ukkonen, L.; Rahmat-Samii, Y. Design and Implementation of Electro-Textile Ground Planes for Wearable UHF RFID Patch Tag Antennas. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 964–967. [Google Scholar] [CrossRef]
- Locher, I.; Klemm, M.; Kirstein, T.; Troster, G. Design and Characterization of Purely Textile Patch Antennas. IEEE Trans. Adv. Packag. 2006, 29, 777–788. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Lim, S. Foldable thin electro-textile antenna array for 4 by 4 multiple-input multiple-output mobile router applications. J. Electromagn. Waves Appl. 2015, 29, 375–385. [Google Scholar] [CrossRef]
- Alonso-González, L.; Ver-Hoeye, S.; Fernández-García, M.; Álvarez-López, Y.; Vázquez-Antuña, C.; Andrés, F.L. Fully Textile-Integrated Microstrip-Fed Slot Antenna for Dedicated Short-Range Communications. IEEE Trans. Antennas Propag. 2018, 66, 2262–2270. [Google Scholar] [CrossRef] [Green Version]
- Kamardin, K.; Rahim, M.; Hall, P.; Samsuri, N.; Latef, T.; Ullah, M. Textile artificial magnetic conductor jacket for transmission enhancement between antennas under bending and wetness measurements. Appl. Phys. A 2016, 122, 423. [Google Scholar] [CrossRef]
- Kamardin, K.; Rahim, M.; Hall, P.; Samsuri, N.; Latef, T.; Ullah, M. Planar textile antennas with artificial magnetic conductor for body-centric communications. Appl. Phys. A 2016, 122, 363. [Google Scholar] [CrossRef]
- Mantash, M.; Tarot, A.C.; Collardey, S.; Mahdjoubi, K. Investigation of Flexible Antennas and AMC Reflectors. Electron. Lett. 2011, 47, 236505. [Google Scholar] [CrossRef]
- Ferreira, D.; Pires, P.; Rodrigues, R.; Caldeirinha, R.F.S. Wearable Textile Antennas: Examining the effect of bending on their performance. IEEE Antennas Propag. Mag. 2017, 59, 54–59. [Google Scholar] [CrossRef]
- Kamardin, K.; Rahim, M.K.A.; Samsuri, N.A.; Jalil, M.E.; Majid, H.A. Transmission enhancement using textile artificial magnetic conductor with coplanar waveguide monopole antenna. Microw. Opt. Technol. Lett. 2015, 57, 197–200. [Google Scholar] [CrossRef]
- Salvado, R.; Loss, C.; Gonçalves, R.; Pinho, P. Textile materials for the design of wearable antennas: A survey. Sensors 2012, 12, 15841–15857. [Google Scholar] [CrossRef] [PubMed]
- Soh, P.J.; Vandenbosch, G.; Wee, F.H.; van den Bosch, A.; Martinez-Vazquez, M.; Schreurs, D. Specific Absorption Rate (SAR) Evaluation of Textile Antennas. IEEE Antennas Propag. Mag. 2015, 57, 229–240. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Bayram, Y.; Volakis, J.L. Embroidered Conductive Fibers on Polymer Composite for Conformal Antennas. IEEE Trans. Antennas Propag. 2012, 60, 4141–4147. [Google Scholar] [CrossRef]
- Du, J.; Roblin, C. Stochastic Surrogate Models of Deformable Antennas Based on Vector Spherical Harmonics and Polynomial Chaos Expansions: Application to Textile Antennas. IEEE Trans. Antennas Propag. 2018, 66, 3610–3622. [Google Scholar] [CrossRef]
Ref. | k | Antenna Design | EM Antenna Performance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Overall Size () W × L × h | Feed Type | Patch Type | Structure | BW Enhacement | Centr. Freq. (GHz) | Meas. BW (%) | Meas. Gain (dBi) | Meas. Eff. (%) | Meas. FTBR (dB) | ||
[47] | 100 | 0.12 × 0.32 × 0.04 | Coaxial | Rectang. | PIFA | None | 2.48 | *44.7 | 1.53 | 77.23 | *6 |
[47] | 72.3 | 0.12 × 0.31 × 0.04 | Coaxial | Rectang. | PIFA | Slot | 2.47 | *47.8 | 1.74 | 80.52 | *4 |
[32] | 61 | 0.50 × 0.61 × 0.01 | Proxim. | Rectang. | Micr. | None | 2.45 | 15.5 | 0.33 | - | 23 |
[32] | 35.1 | 0.52 × 0.64 × 0.01 | Proxim. | Rectang. | Micr. | None | 2.45 | 11.8 | 0.41 | - | 21 |
[36] | 26.9 | 0.64 × 1.07 × 0.04 | Coaxial | Complex | Micr. | Both | 2.20 | 52 | 3.38 | - | 21 |
[40] | 23.2 | 0.66 × 0.87 × 0.05 | CPW | Octagone | Micr. | Parasitic | 9.50 | *108.8 | **7.2 | - | 10 |
[48] | 18.9 | 0.22 × 0.29 × 0.04 | Coaxial | Triangular | PIFA | Slot | 2.14 | 15.2 | - | 70.6 | **5 |
[7] | 18.9 | 1.06 × 1.16 × 0.04 | Coaxial | Complex | Micr. | Parasitic | 5 | 96.4 | 6.75 | 75 | 14 |
[42] | 14 | 0.32 × 0.32 × 0.03 | Proxim. | Rectang. | PIFA | None | 2.45 | *3.3 | 3.1 | - | *15 |
[52] | 13.2 | 0.56 × 0.56 × 0.02 | Coaxial | Circular | Micr. | Slot | 2.45 | 3.3 | 5.02 | **63.5 | *13 |
[6] | 10.5 | 0.71 × 0.71 × 0.02 | Coaxial | Square | Micr. | Slot | 2.21 | *14.3 | 2.5 | 40 | *12 |
[42] | 7.93 | 0.63 × 0.63 × 0.05 | Proxim | Rectang. | Micr. | Slot | 4.8 | 10 | 8 | - | *30 |
[45] | 7.57 | 0.51 × 0.51 × 0.03 | Coaxial | Complex | SIW | Slot | 2.45 | 4.8 | 4.2 | 81 | *24 |
[46] | 6.39 | 0.80 × 0.73 × 0.02 | Coaxial | Rectang. | SIW | None | 2.4 | 6.4 | 2.9 | **55 | *22 |
[44] | 5.12 | 0.55 × 0.45 × 0.03 | Coaxial | Complex | SIW | Slot | 2.45 | 4.9 | 4.1 | 72.8 | *14 |
[55] | 4.82 | 0.44 × 0.75 × 0.07 | Coaxial | Rectang. | SIW | Slot | 5.35 | *20.2 | 6.66 | 90 | 8 |
[51] | 3.11 | 0.79 × 1.41 × 0.02 | Micr. | Rectang. | SIW | Slot | 5.8 | *4.3 | - | - | *18 |
[69] | 3.07 | 0.94 × 0.94 × 0.02 | Micr. | Rectang. | Micr. | Slot | 5.91 | 9.3 | -2.8 | 17.2 | 9 |
[42] | 2.44 | 0.70 × 0.70 × 0.06 | Proxim. | Rectang. | Micr. | None | 5.35 | *2.8 | 7.8 | - | *20 |
[53] | 2.32 | 0.59 × 0.38 × 0.03 | Coaxial | Rectang. | SIW | Slot | 2.45 | *5.1 | 5.28 | 73 | *5 |
[41] | 1.72 | 1.42 × 1.42 × 0.03 | Coaxial | Complex | Micr. | None | 2.49 | 17.1 | -0.3 | 15.2 | *17 |
[37] | 0.91 | 0.80 × 0.80 × 0.10 | Coaxial | Rectang. | Micr. | Slot | 5.1 | *13.6 | 6.2 | **75 | *8 |
[56] | 0.36 | 0.32 × 0.32 × 0.01 | Coaxial | Circular | Micr. | None | 2.46 | 6.5 | -7.2 | 24 | *0 |
Ref. | Materials | Antenna Design | Construction Method | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Diel. Name | Unit. Thick. (mm) | Cond. Name | Feed Type | Structure | # of Total Layers | Port Attach. Method | Port Glue Type | Layer Attach. Method | Layer Glue Type | Cutting Method | |
[47] | Felt | 6 | ShieldIt Sup. | Coax. | PIFA | 3 | Glue | Ag Epoxy | Glue | Emb. | Man. |
[47] | Felt | 6 | PCPTF | Coax. | PIFA | 3 | Glue | Ag Epoxy | Sewn | - | Man. |
[48] | Felt | 6 | ShieldIt Sup. | Coax. | PIFA | 3 | Galv. | NA | Glue | Emb. | Man. |
[42] | Foam | 1.6 | Nylon Rips. | Prox. | PIFA | 5 | Glue | Ag Epoxy | Glue | Emb. | Laser |
[45] | Foam | 3.7 | PCPTF | Coax. | SIW | 3 | Galv. | NA | Glue | Adh. Sheet | Laser |
[46] | Felt | 3 | ShieldIt Sup. | Coax. | SIW | 3 | Galv. | NA | Glue | Emb. | Man. |
[44] | Foam | 3.9 | PCPTF | Coax. | SIW | 3 | Galv. | NA | Glue | Adh. Sheet | Man. |
[55] | Foam | 4 | PCPTF | Coax. | SIW | 3 | Galv. | NA | Glue | Adh. Sheet | Laser |
[53] | Felt | 3 | ShieldIt Sup. | Coax. | SIW | 3 | Galv. | NA | Glue | - | Laser |
[32] | Denim | 0.7 | PCPTF | Prox. | Micr. | 5 | Galv. | NA | Sewn | - | Laser |
[32] | Denim | 0.7 | PCPTF | Prox. | Micr. | 5 | Galv. | NA | Sewn | - | Man. |
[42] | Foam | 1.6 | Nylon Rips. | Prox. | Micr. | 5 | Glue | Ag Epoxy | Glue | Ag Epoxy | Laser |
[36] | Felt | 3 | ShieldIt Sup. | Coax. | Micr. | 3 | - | - | Glue | - | Man. |
[7] | Felt | 3 | ShieldIt Sup. | Coax. | Micr. | 3 | Galv. | NA | Glue | Emb. | Man. |
[52] | PDMS | - | Nylon Rips. | Coax. | Micr. | 3 | Glue | Ag Epoxy | Glue | PDMS | Man. |
[6] | Felt | 1.5 | ShieldIt Sup. | Coax. | Micr. | 3 | - | - | Glue | - | Man. |
[37] | Felt | 6 | ShieldIt Sup. | Coax. | Micr. | 3 | Glue | Ag Epoxy | Glue | - | Man. |
[56] | Felt | 1 | Zell | Coax. | Micr. | 3 | Glue | Ag Epoxy | Sewn | - | Man. |
[39] | Felt | 1 | NoraDell | Coax. | Micr. | 3 | Glue | - | Sewn | - | Man. |
[69] | PET-PES | 0.025 | 117f17 | Micr. | Micr. | 3 | Glue | Ag Epoxy | Sewn | - | Laser |
[40] | Felt | 2 | ShieldIt Sup. | CPW | Micr. | 5 | Galv. | NA | Glue | - | Man. |
Ref. | Measurement Setup | Design | BW (%) | Gain (dBi) | Eff. (%) | FTBR(dB) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dis. Gap (mm) | Bend. Radii (mm) | Centr. Freq. (GHz) | Body Model | Feed Type | Structure | Flat Free- Space | Flat Body | Bend Free- Space | Flat Free- Space | Flat Body | Flat Free- Space | Flat Body | Flat Free- Space | Flat Body | |
[44] | 1 | 40 | 2.45 | Phantom | Coax. | SIW | 5 | 4 | 5 | 4.1 | 4.4 | 73 | 61 | 13.5 | 14 |
[44] | 1 | 40 | 5.8 | Phantom | Coax. | SIW | 5 | 5 | 7 | 5.8 | 5.7 | 86 | 69 | 12.5 | 13.5 |
[45] | 2 | - | 2.45 | Phantom | Coax. | SIW | 5 | 5 | - | 4.2 | 3.8 | 81 | 81 | 24 | 28 |
[6] | 10 | 20 | 2.21 | Phantom | Coax. | Micr. | 14 | 14 | 13 | 2.5 | - | 40 | - | 12 | 12 |
[6] | 10 | 30 | 5.5 | Phantom | Coax. | Micr. | 22 | 17 | 13 | 4 | - | 40 | - | 12 | 12 |
[7] | 5 | - | 5 | Phantom | Coax. | Micr. | 96 | 93 | - | 6.8 | 6.3 | 45 | 45 | 14 | 20 |
[53] | 5 | 30 | 2.45 | Hugo Mod. | Coax. | SIW | 5 | 5 | 5 | 5.28 | 5.35 | 73 | 74 | 5 | - |
[52] | 10 | 45 | 2.45 | Phantom | Coax. | Micr. | 3 | 4 | 4 | 5.02 | 4.16 | - | - | 13 | 16.5 |
[52] | 10 | 45 | 5.8 | Phantom | Coax. | Micr. | 4 | 4 | 4 | 3.66 | 4.34 | - | - | 11 | 15.2 |
[51] | 5 | 50 | 5.8 | Duke Mod. | Micr. | SIW | 4 | 4 | - | - | 3.12 | - | 38 | 18 | 17 |
[55] | - | - | 5.8 | - | Coax. | SIW | 16 | 16 | 15 | 6.64 | - | 90 | - | 8.5 | 20 |
[42] | 0 | 30 | 4.8 | Phantom | Prox. | Micr. | 10 | 9 | 11 | 8 | 7.55 | - | - | 30 | - |
[48] | 1 | - | 2.14 | Hugo Mod. | Coax. | PIFA | 15 | 13 | - | - | - | 71 | 40 | - | - |
[48] | 1 | - | 5.28 | Hugo Mod. | Coax. | PIFA | 11 | 10 | - | - | - | 73 | 53 | - | - |
[37] | 5 | - | 5.1 | Hugo Mod. | Coax. | Micr. | 14 | 14 | - | 6.2 | - | - | - | 8 | - |
[37] | 5 | - | 2.45 | Hugo Mod. | Coax. | Micr. | 2 | 3 | - | -3.8 | - | - | - | - | - |
[46] | 5 | 40 | 2.4 | Phantom | Coax. | SIW | 6 | 7 | - | 2.9 | - | - | - | 22 | - |
[46] | 5 | 80 | 5.65 | Phantom | Coax. | SIW | 12 | 12 | - | 5 | - | - | - | 10 | - |
[43] | 15 | - | 2.44 | Hugo Mod. | Coax. | Micr. | 4 | 2 | - | 5 | - | - | - | - | - |
[33] | - | 43.2 | 2.44 | - | Micr. | Micr. | 2 | 2 | 2 | - | - | - | - | - | - |
[39] | 10 | - | 2.4 | Phantom | Coax. | Micr. | 5 | 6 | - | 0 | 1.8 | 57 | 42 | - | - |
[73] | - | 28.5 | 2.4 | - | Coax. | Micr. | 5 | 6 | 5 | - | 3.8 | - | - | 23 | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del-Rio-Ruiz, R.; Lopez-Garde, J.-M.; Legarda, J. Planar Textile Off-Body Communication Antennas: A Survey. Electronics 2019, 8, 714. https://doi.org/10.3390/electronics8060714
Del-Rio-Ruiz R, Lopez-Garde J-M, Legarda J. Planar Textile Off-Body Communication Antennas: A Survey. Electronics. 2019; 8(6):714. https://doi.org/10.3390/electronics8060714
Chicago/Turabian StyleDel-Rio-Ruiz, Ruben, Juan-Manuel Lopez-Garde, and Jon Legarda. 2019. "Planar Textile Off-Body Communication Antennas: A Survey" Electronics 8, no. 6: 714. https://doi.org/10.3390/electronics8060714
APA StyleDel-Rio-Ruiz, R., Lopez-Garde, J. -M., & Legarda, J. (2019). Planar Textile Off-Body Communication Antennas: A Survey. Electronics, 8(6), 714. https://doi.org/10.3390/electronics8060714