Measuring the Power Law Phase Noise of an RF Oscillator with a Novel Indirect Quantitative Scheme
Abstract
:1. Introduction
2. System Model
2.1. Testing Modality
2.2. Phase Noise Model
2.3. Factor Approximation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jurgo, M.; Navickas, R. Structure of All-Digital Frequency Synthesiser for IoT and IoV Applications. Electronics 2019, 8, 29. [Google Scholar] [CrossRef]
- Khanzadi, M.R.; Krishnan, R.; Kuylenstierna, D.; Eriksson, T. Oscillator phase noise and small-scale channel fading in higher frequency bands. In Proceedings of the 2014 IEEE Globecom Workshops (GC Wkshps), Austin, TX, USA, 8–12 December 2014; pp. 410–415. [Google Scholar] [CrossRef]
- Meng, Z.; Hu, Y.M.; Xiong, S.D.; Stewart, G.; Whitenett, G.; Culshaw, B. Phase noise characteristics of a diode-pumped Nd:YAG laser in an unbalanced fiber-optic interferometer. Appl. Opt. 2012, 44, 3425–3428. [Google Scholar] [CrossRef] [PubMed]
- Barton, D.K. Radar system analysis and modeling. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 23–25. [Google Scholar] [CrossRef]
- Chan, E.H.W. Suppression of phase-induced intensity noise in fibre optic delay line signal processors using an optical phase modulation technique. Opt. Express 2010, 18, 21573–21584. [Google Scholar] [CrossRef] [PubMed]
- Leeson, D.B. Oscillator phase noise: A 50-year review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1208–1225. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jonsson, F.; Zheng, L.R. A fast and accurate phase noise measurement of free running oscillators using a single spectrum analyzer. In Proceedings of the IEEE Norchip Conference, Tampere, Finland, 15–16 November 2010; pp. 1–4. [Google Scholar]
- Angrisani, L.; Baccigalupi, A.; D’Arco, M. A new method for phase noise measurement. In Proceedings of the IEEE Instrumentation & Measurement Technology Conference, Anchorage, AK, USA, 21–23 May 2002; pp. 663–668. [Google Scholar]
- Rohde, U.L.; Poddar, A.K.; Apte, A.M. Getting its measure. IEEE Microw. Mag. 2013, 14, 73–86. [Google Scholar] [CrossRef]
- Gheidi, H.; Banai, A. Phase-noise measurement of microwave oscillators using phase-shifterless delay-line discriminator. IEEE Trans. Microw. Theory Tech. 2010, 58, 468–477. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhang, X.F.; Wang, J.L. A new algorithm for eliminating the frequency difference in phase noise measurement of the microwave signal. Prog. Electromagn. Res. M 2012, 23, 13–28. [Google Scholar] [CrossRef]
- Agrawal, D.K.; Bizzarri, F.; Brambilla, A.; Seshia, A. Numerical verification of an analytical model for phase noise in MEMS oscillators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 1204–1207. [Google Scholar] [CrossRef] [PubMed]
- Demir, A.; Mehrotra, A.; Roychowdhury, J. Phase noise in oscillators: A unifying theory and numerical methods for characterization. IEEE Trans. Circuits Syst. I-Fundam. Theory Appl. 2000, 47, 655–674. [Google Scholar] [CrossRef]
- D’Arco, M.; De Vito, L. A novel method for phase noise measurement based on cyclic complementary autocorrelation. IEEE Trans. Instrum. Meas. 2016, 65, 2685–2692. [Google Scholar] [CrossRef]
- Kasdin, N.J. Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation. Proc. IEEE 1995, 83, 802–827. [Google Scholar] [CrossRef]
- Leeson, D.B. A simple model of feedback oscillator noise spectrum. Proc. IEEE 1966, 4682, 329–330. [Google Scholar] [CrossRef]
- Vernotte, F. Estimation of the power spectral density of phase: comparison of three methods. In Proceedings of the 1999 Joint Meeting of the European Frequency and Time Forum and the IEEE International Frequency Control Symposium, Besancon, France, 13–16 April 1999; pp. 1109–1112. [Google Scholar]
- Yousefi, S.; Eriksson, T.; Kuylenstierna, D. A novel model for simulation of RF oscillator phase noise. In Proceedings of the 2010 IEEE Radio and Wireless Symposium (RWS), New Orleans, LA, USA, 10–14 January 2010; pp. 428–431. [Google Scholar]
- Chorti, M.B. A spectral model for RF oscillators with power-law phase noise. IEEE Trans. Circuits Syst. 2006, 53, 1989–1999. [Google Scholar] [CrossRef]
- IEEE. IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology—Random Instabilities; IEEE Standards 1139-1999; IEEE: Piscatway, NJ, USA, 2009. [Google Scholar]
- Klimovitch, G. A nonlinear theory of near-carrier phase noise in free running oscillators. In Proceedings of the 2000 Third IEEE International Caracas Conference on Devices, Circuits and Systems, Cancun, Mexico, 17 March 2000; pp. 1–6. [Google Scholar]
- Greenhall, C.A. An approach to power-law phase-noise models through generalized funcitons. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2015, 62, 116–128. [Google Scholar]
- Ashbby, N. Probability distributions and confidence intervals for simulated power law noise. Metrologia 2010, 47, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Moré, J.J. The Levenberg-Marquardt algorithm: implementation and theory. In Numerical Analysis; Watson, G.A., Ed.; Springer: Berlin/Heidelberg, Germany, 1978; Volume 630, pp. 105–116. [Google Scholar]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–440. [Google Scholar] [CrossRef]
- R&S®SMW200A Vector Signal Generator. The Fine Art of Signal Generation. 2016. Available online: https://www.rohde-schwarz.com/ae/product/smw200a-productstartpage_63493-38656.html (accessed on 20 June 2019).
Noise Type | α | Sφ(f) | SV(f) | Comments |
---|---|---|---|---|
White phase noise | 0 | B is the bandwidth of the testing instruments. SV(f) and Sφ(f) become constants only if B ≫ f | ||
Flicker phase noise | −1 | 0 < ν1 ≪ 1 | ||
White FM noise | −2 | SV(f) and Sφ(f) become identical if | ||
Flicker FM phase noise | −3 | q is a function of ν3 as (0 < ν3 ≪ 1): | ||
Random walk FM phase noise | −4 | is the starting offset frequency for f −4 noise, p is a constant and H(*) denotes the Heaviside step function. |
Controlled Variable | Value (10 MHz) | Value (100 MHz) | Value (600 MHz) |
---|---|---|---|
q | 0.240 | 0.500 | 0.500 |
ν3 | 9.00 × 10−4 | 2.00 × 10−4 | 2.0 × 10−4 |
p | 3.95 × 10−15 | 7.54 × 10−19 | 4.55 × 10−16 |
h0 | 1.69 × 10−14 | 1.55 × 10−14 | 1.28 × 10−14 |
h−1 | 1.36 × 10−10 | 1.51 × 10−10 | 1.58 × 10−10 |
h−2 | 1.36 × 10−8 | 2.33 × 10−8 | 3.79 × 10−8 |
h−3 | 4.91 × 10−7 | 4.31 × 10−7 | 3.22 × 10−7 |
h−4 | 8.81 × 10−10 | 1.81 × 10−13 | 8.13 × 10−11 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Peng, C.; Huan, H.; Nian, F.; Yang, B. Measuring the Power Law Phase Noise of an RF Oscillator with a Novel Indirect Quantitative Scheme. Electronics 2019, 8, 767. https://doi.org/10.3390/electronics8070767
Chen X, Peng C, Huan H, Nian F, Yang B. Measuring the Power Law Phase Noise of an RF Oscillator with a Novel Indirect Quantitative Scheme. Electronics. 2019; 8(7):767. https://doi.org/10.3390/electronics8070767
Chicago/Turabian StyleChen, Xiaolong, Cuiling Peng, Huiting Huan, Fushun Nian, and Baoguo Yang. 2019. "Measuring the Power Law Phase Noise of an RF Oscillator with a Novel Indirect Quantitative Scheme" Electronics 8, no. 7: 767. https://doi.org/10.3390/electronics8070767
APA StyleChen, X., Peng, C., Huan, H., Nian, F., & Yang, B. (2019). Measuring the Power Law Phase Noise of an RF Oscillator with a Novel Indirect Quantitative Scheme. Electronics, 8(7), 767. https://doi.org/10.3390/electronics8070767