Unobtrusive Sleep Monitoring Using Movement Activity by Video Analysis
Abstract
:1. Introduction
2. Related Works
2.1. The Relation between Sleep Behavior and Sleep Disorder
2.2. Contact Sensors for Sleep Analysis
2.3. Noncontact Sensors for Sleep Behavior Analysis
2.4. Pose Recognition by Computer Vision
3. Sleep Pose Recognition
3.1. Near-Infrared Image Enhancement
3.2. Detection and Tracking of Human Joints by Distinctive Invariant Feature
3.3. Sleep Pose Estimation by Bayesian Inference
4. Experimental Results
4.1. Effectiveness of Near-Infrared Image Enhancement
4.2. Evaluation of Pose Recognition
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for scoring respiratory events in sleep: Update of the 2007 AASM manual for the scoring of sleep and associated events. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [PubMed]
- Procházka, A. Sleep scoring using polysomnography data features. Signal Image Video Process. 2018, 12, 1043–1051. [Google Scholar] [CrossRef]
- Roebuck, A.; Monasterio, V.; Gederi, E.; Osipov, M.; Behar, J.; Malhotra, A.; Penzel, T.; Clifford, G.D. A review of signals used in sleep analysis. Physiol. Meas. 2014, 35, 1–57. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Choi, S.H. Smart Technologies Toward Sleep Monitoring at Home. Biomed. Eng. Lett. 2019, 9, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Sivan, Y.; Kornecki, A.; Schonfeld, T. Screening obstructive sleep apnoea syndrome by home videotape recording in children. Eur. Respir. J. 1996, 9, 2127–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwichtenberg, A.J.; Choe, J.; Kellerman, A.; Abel, E.; Delp, E.J. Pediatric videosomnography: Can signal/video processing distinguish sleep and wake states? Front. Pediatr. 2018, 6, 158. [Google Scholar] [CrossRef] [PubMed]
- Scatena, M. An integrated video-analysis software system de-signed for movement detection and sleep analysis. Validation of a tool for the behavioural study of sleep. Clin. Neurophysiol. 2012, 123, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.M.; Lee, J.S.; Chung, P.C. A visual context-awareness-based sleeping-respiration measurement system. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 255–265. [Google Scholar] [PubMed]
- Cuppens, K.; Lagae, L.; Ceulemans, B.; Huffel, S.V.; Vanrumste, B. Automatic video detection of body movement during sleep based on optical flow in pediatric patients with epilepsy. Med. Biol. Eng. Comput. 2010, 48, 923–931. [Google Scholar] [CrossRef]
- Choe, J.; Schwichtenberg, A.J.; Delp, E.J. Classification of sleep videos using deep learning. In Proceedings of the IEEE Conference on Multimedia Information Processing and Retrieval, San Jose, CA, USA, 28–30 March 2019; pp. 115–120. [Google Scholar]
- Wang, Y.K.; Chen, J.R.; Chen, H.Y. Sleep pose recognition by feature matching and Bayesian inference. In Proceedings of the International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 24–28. [Google Scholar]
- Nakajima, K.; Matsumoto, Y.; Tamura, T. Development of real-time image sequence analysis for evaluating posture change and respiratory rate of a subject in bed. Physiol. Meas. 2001, 22, 21–28. [Google Scholar] [CrossRef]
- Yang, F.C.; Kuo, C.H.; Tsai, M.Y.; Huang, S.C. Image-based sleep motion recognition using artificial neural networks. In Proceedings of the International Conference on Machine Learning and Cybernetics, Xi’an, China, 5 November 2003; pp. 2775–2780. [Google Scholar]
- Wang, C.W.; Hunter, A. Robust pose recognition of the obscured human body. Int. J. Comput. Vis. 2010, 90, 313–330. [Google Scholar] [CrossRef]
- Wang, C.W.; Hunter, A.; Gravill, N.; Matusiewicz, S. Real time pose recognition of covered human for diagnosis of sleep apnoea. Comput. Med. Imaging Graph. 2010, 34, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.H.; Kuo, J.H. Sleep monitoring system in real bedroom environment using texture-based background modeling approaches. J. Ambient Intell. Humaniz. Comput. 2013, 4, 57–66. [Google Scholar] [CrossRef]
- Okada, S.; Ohno, Y.; Kenmizaki, K.; Tsutsui, A.; Wang, Y. Development of non-restrained sleep-monitoring method by using difference image processing. In Proceedings of the European Conference of the International Federation for Medical and Biological Engineering, Antwerp, Belgium, 23–27 November 2009; pp. 1765–1768. [Google Scholar]
- Oksenberg, A.; Silverberg, D.S. The effect of body posture on sleep-related breathing disorders: Facts and therapeutic implications. Sleep Med. Rev. 1998, 2, 139–162. [Google Scholar] [CrossRef]
- Isaiah, A.; Pereira, K.D. The effect of body position on sleep apnea in children. In Positional Therapy in Obstructive Sleep Apnea; Springer Nature Switzerland: Basel, Switzerland, 2014; Volume 14, pp. 151–161. [Google Scholar]
- Joosten, S.A.; O’Driscoll, D.M.; Berger, P.J.; Hamilton, G.S. Supine position related obstructive sleep apnea in adults: Pathogenesis and treatment. Sleep Med. Rev. 2014, 18, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Russo, K.; Bianchi, M.T. How reliable is self-reported body position during sleep? Sleep Med. 2016, 12, 127–128. [Google Scholar] [CrossRef] [PubMed]
- Ravesloot, M.J.L.; Maanen, J.P.V.; Dun, L.; de Vries, N. The undervalued potential of positional therapy in position-dependent snoring and obstructive sleep apnea—A review of the literature. Sleep Breath. 2013, 17, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Xu, W.; Huang, M.C.; Alshurafa, N.; Sarrafzadeh, M.; Raut, N.; Yadegar, B. Sleep posture analysis using a dense pressure sensitive bedsheet. Pervasive Mob. Comput. 2014, 10, 34–50. [Google Scholar] [CrossRef]
- Hossain, H.M.S.; Ramamurthy, S.R.; Khan, M.A.A.H.; Roy, N. An active sleep monitoring framework using wearables. ACM Trans. Interact. Intell. Syst. 2018, 8, 22. [Google Scholar] [CrossRef]
- Foerster, F.; Smeja, M.; Fahrenberg, J. Detection of posture and motion by accelerometry: A validation study in ambulatory monitoring. Comput. Hum. Behav. 1999, 15, 571–583. [Google Scholar] [CrossRef]
- Hoque, E.; Dickerson, R.F.; Stankovic, J.A. Monitoring body positions and movements during sleep using WISPs. In Wireless Health; ACM: New York, NY, USA, 2010; pp. 44–53. [Google Scholar] [Green Version]
- van Der Loos, H.; Kobayashi, H.; Liu, G. Unobtrusive vital signs monitoring from a multisensor bed sheet. In In Proceedings of the RESNA Conference, Reno, NV, USA, 22–26 June 2001. [Google Scholar]
- Xiao, Y.; Lin, J.; Boric-Lubecke, O.; Lubecke, V.M. A Ka-band low power doppler radar system for remote de-tection of cardiopulmonary motion. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2005; pp. 7151–7154. [Google Scholar]
- Bak, J.U.; Giakoumidis, N.; Kim, G.; Dong, H.; Mavridis, N. An intelligent sensing system for sleep motion and stage analysis. Procedia Eng. 2012, 41, 1128–1134. [Google Scholar] [CrossRef]
- Sadeh, A. Sleep assessment methods. Monogr. Soc. Res. Child Dev. 2015, 80, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Dong, J.; Wang, X.; Fang, Y.; Liu, Y.; Yu, Z.; Liu, J.; Chen, F. Design and implementation of a noncontact sleep monitoring system using infrared cameras and motion sensor. IEEE Trans. Instrum. Meas. 2018, 67, 1555–1563. [Google Scholar] [CrossRef]
- Gao, Z.; Ma, Z.; Chen, X.; Liu, H. Enhancement and de-noising of near-infrared Image with multiscale Morphology. In Proceedings of the 2011 5th International Conference on Bioinformatics and Biomedical Engineering, Wuhan, China, 10–12 May 2011; pp. 1–4. [Google Scholar]
- Holtzhausen, P.J.; Crnojevic, V.; Herbst, B.M. An illumina-tion invariant framework for real-time foreground detection. J. Real-Time Image Process. 2015, 10, 423–433. [Google Scholar] [CrossRef]
- Park, Y.K.; Park, S.L.; Kim, J.K. Retinex method based on adaptive smoothing for illumination invariant face recognition. Signal Process. 2008, 88, 1929–1945. [Google Scholar] [CrossRef]
- Maik, V.; Paik, D.T.; Lim, J.; Park, K.; Paik, J. Hierarchical pose classification based on human physiology for behaviour analysis. IET Comput. Vis. 2010, 4, 12–24. [Google Scholar] [CrossRef]
- Wang, Y.K.; Cheng, K.Y. A two-stage Bayesian network method for 3D human pose sstimation from monocular image sequences. EURASIP J. Adv. Signal Process. 2010, 2010, 761460. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Gool, L.V. Speeded-up robust features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Ouyang, W.; Tombari, F.; Mattoccia, S.; Stefano, L.D.; Cham, W.K. Performance evaluation of full search equivalent pattern matching algorithms. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 2012, 34, 127–143. [Google Scholar]
- Scovanner, P.; Ali, S.; Shah, M. A 3-dimensional SIFT descriptor and its application to action recognition. In Proceedings of the 15th ACM international conference on Multimedia, Augsburg, Germany, 25–29 September 2007; pp. 357–360. [Google Scholar]
- Wang, H.; Yi, Y. Tracking salient keypoints for human action recognition. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Kowloon, China, 9–12 October 2015; pp. 3048–3053. [Google Scholar]
- Zhang, J.T.; Tsoi, A.C.; Lo, S.L. Scale Invariant feature transform flow trajectory approach with applications to human action recognition. In Proceedings of the International Joint Conference on Neural Networks, Beijing, China, 6–11 July 2014; pp. 1197–1204. [Google Scholar]
- Molina, A.; Ramirez, T.; Diaz, G.M. Robustness of interest point detectors in near infrared, far infrared and visible spectral images. In Proceedings of the 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, Colombia, 31 August–2 September 2016; pp. 1–6. [Google Scholar]
- Schweiger, F.; Zeisl, B.; Georgel, P.F.; Schroth, G. Maximum detector response markers for SIFT and SURF. In Proceedings of the Workshop on Vision, Modeling and Visualization, Braunschweig, Germany, 16 November 2009; pp. 145–154. [Google Scholar]
- Wang, Y.K.; Huang, W.B. A CUDA-enabled parallel algorithm for accelerating retinex. J. Real-Time Image Process. 2012, 9, 407–425. [Google Scholar] [CrossRef]
- Hare, S.; Saffari, A.; Torr, P.H.S. Efficient online structured output learning for keypoint-based object tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 1894–1901. [Google Scholar]
- Huang, C.; Darwiche, A. Inference in belief networks: A procedural guide. Int. J. Approx. Reason. 1996, 15, 225–263. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.K.; Su, C.H. Illuminant-invariant Bayesian detection of moving video objects. In Proceedings of the International Conference on Signal and Image Processing, Honolulu, HI, USA, 14–16 August 2006; pp. 57–62. [Google Scholar]
- Cole, R.J.; Kripke, D.F.; Gruen, W.; Mullaney, D.J.; Gillin, J.C. Automatic sleep/wake identification from wrist activity. Sleep 1992, 15, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Ramanan, D.; Forsyth, D.A.; Zisserman, A. Tracking people by learning their appearance. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 65–81. [Google Scholar] [CrossRef] [PubMed]
Critical Points | Arguments |
---|---|
Sleep behavior is important to OSA diagnosis |
|
Non-contact and unobtrusive analysis are advantageous but have challenges |
|
Motivation of this paper |
|
Age | Body Mass Index | RDI | PLM | Sleep Efficiency | ||
---|---|---|---|---|---|---|
Normal group | Mean | 42.63 | 24.39 | 4.23 | 1.28 | 91.44 |
SD | 14.37 | 4.18 | 2.44 | 1.61 | 4.7 | |
OSA group | Mean | 51.1 | 24.99 | 35.85 | 1.43 | 84.22 |
SD | 15.25 | 2.69 | 21.68 | 3.03 | 12.3 |
E | SPC | NPV | ||
---|---|---|---|---|
Normal group | Mean | 0.09 | 0.95 | 0.91 |
STD | 0.16 | 0.04 | 0.10 | |
OSA group | Mean | 0.15 | 0.93 | 0.84 |
STD | 0.18 | 0.19 | 0.21 |
Torso | Right Ankle | Left Ankle | Right Knee | Left Knee | Right Elbow | Left Elbow | Right Wrist | Left Wrist | Head | |
---|---|---|---|---|---|---|---|---|---|---|
Ramanan | 80 | 60 | 53 | 60 | 37 | N/A | N/A | N/A | N/A | 53 |
RTPose | 93 | N/A | N/A | 70 | 80 | N/A | N/A | N/A | N/A | 80 |
MatchPose | 97 | 45 | 69 | 75 | 80 | N/A | N/A | N/A | N/A | 94 |
Our | 100 | 92 | 75 | 50 | 92 | 100 | 83 | 100 | 92 | 100 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-K.; Chen, H.-Y.; Chen, J.-R. Unobtrusive Sleep Monitoring Using Movement Activity by Video Analysis. Electronics 2019, 8, 812. https://doi.org/10.3390/electronics8070812
Wang Y-K, Chen H-Y, Chen J-R. Unobtrusive Sleep Monitoring Using Movement Activity by Video Analysis. Electronics. 2019; 8(7):812. https://doi.org/10.3390/electronics8070812
Chicago/Turabian StyleWang, Yuan-Kai, Hung-Yu Chen, and Jian-Ru Chen. 2019. "Unobtrusive Sleep Monitoring Using Movement Activity by Video Analysis" Electronics 8, no. 7: 812. https://doi.org/10.3390/electronics8070812
APA StyleWang, Y. -K., Chen, H. -Y., & Chen, J. -R. (2019). Unobtrusive Sleep Monitoring Using Movement Activity by Video Analysis. Electronics, 8(7), 812. https://doi.org/10.3390/electronics8070812