Experimental Interference Robustness Evaluation of IEEE 802.15.4-2015 OQPSK-DSSS and SUN-OFDM Physical Layers for Industrial Communications
Abstract
:1. Introduction
2. IEEE 802.15.4-2015 Overview
2.1. IEEE 802.15.4-2015 OQPSK-DSSS
2.2. IEEE 802.15.4 SUN-OFDM
3. Related Work
4. Methodology and Setup
4.1. Evaluation Methodology
4.2. Base Experiment
4.3. Setup
4.4. Radio Calibration
5. Results
6. Discussion and Recommendations
6.1. Discussion
6.2. Recommendations
- Thanks to the small effect of packet length in the PDR with respect to the SIR, SUN-OFDM allows for using larger packets (i.e., packet bundling) to increase the transmission efficiency (i.e., more effective data with the same packet headers) without sacrificing robustness. In fact, SUN-OFDM allows payloads of up to 2047 bytes, effectively allowing to transmit full IPv6 packets without fragmentation or allowing to group up to sixteen 127-bytes frames in a single 2047-bytes frame.
- Despite the fact that SUN-OFDM transceivers consume a higher amount of energy compared to state-of-the-art IEEE 802.15.4 transceivers due to the additional circuitry required to operate (scrambler, convolutional encoder, puncturer, interleaver, Viterbi decoder), the higher level of robustness against interference provided by SUN-OFDM allows for using higher data rates (up to 800 kbps) to reduce the average energy consumption of the transmitter and the receiver devices.
- As the preamble of a SUN-OFDM packet is transmitted using the lowest MCS option of the current configuration, and includes information regarding the MCS option used to transmit the packet payload, this allows the transmitter to switch between different MCS options of the same SUN-OFDM configuration without any changes in the receiver configuration. It is hence possible for the transmitter to use an aggressive modulation for an initial packet transmission, and use a more robust modulation when re-transmitting. Similarly, acknowledgement frames can be transmitted using the most robust modulation to increase the probability they are received.
- The use of SUN-OFDM for deployments with a high device density and/or high interference levels is advisable, as it provides higher spectral efficiency, while maintaining a similar level of robustness against interference with respect to OQPSK-DSSS. If interference is of concern, choosing OFDM1-MCS1 over OQPSK-DSSS translates into a 4x capacity increase while providing an average advantage of 9 dB against the same interference. In contrast, if interference is not a concern, choosing OFDM4-MCS5 offers a 26x capacity increase, while maintaining a similar level of protection against the same type of interference.
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BPSK | Binary Phase Shift Keying |
CSMA/CA | Carrier Sense Multiple Access/Collision Avoidance |
DSSS | Direct Sequence Spread Spectrum |
DUT | Device Under Test |
ED | Energy Detection |
FCS | Frame Check Sequence |
FDMA | Frequency Division Multiple Access |
FSK | Frequency Shift Keying |
IEEE | Institute of Electrical and Electronic Engineers |
ISM | Industrial, Scientific and Medical |
LoRa | Long Range |
LP-WAN | Low-Power Wide-Area Network |
MAC | Medium Access Control |
MCS | Modulation and Coding Scheme |
MCU | Micro-Controller Unit |
OFDM | Orthogonal Frequency Division Multiplexing |
OQPSK | Offset Quadrature Phase-Shift Keying |
PDR | Packet Delivery Ratio |
PHR | PHY Header |
PHY | Physical Layer |
PRNG | Pseudo-Random Noise Generator |
PSD | Power Spectral Density |
PSDU | PHY Service Data Unit |
QAM | Quadrature Amplitude Modulation |
QPSK | Quadrature Phase Shift Keying |
RF | Radio Frequency |
SFD | Start-of-Frame Delimiter |
SHR | Synchronization Header |
SIR | Signal-to-Interference Ratio |
SPI | Serial Peripheral Interface |
SUN | Smart Utility Networks |
TDMA | Time Division Multiple Access |
TE | Test Equipment |
TSCH | Time Slotted Channel Hopping |
UART | Universal Asynchronous Receiver–Transmitter |
USB | Universal Serial Bus |
References
- IEEE Standard for Low-Rate Wireless Networks; IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011); IEEE: Piscataway, NJ, USA, 2016; pp. 1–709. [CrossRef]
- Gutierrez, J.A.; Naeve, M.; Callaway, E.; Bourgeois, M.; Mitter, V.; Heile, B. IEEE 802.15.4: A developing standard for low-power low-cost wireless personal area networks. IEEE Netw. 2001, 15, 12–19. [Google Scholar] [CrossRef]
- Gislason, D. Zigbee Wireless Networking; Newnes: Cambridge, MA, USA, 2008. [Google Scholar]
- ANSI/ISA-100.11a-2011 Wireless Systems for Industrial Automation: Process Control and Related Applications; International Society of Automation Standard: Durham, NC, USA, 2011.
- Chen, D.; Nixon, M.; Mok, A. WirelessHART: Real-Time Mesh Network for Industrial Automation, 1st ed.; Springer Publishing Company: New York, NY, USA, 2010. [Google Scholar]
- Vilajosana, X.; Watteyne, T.; Vučinić, M.; Chang, T.; Pister, K.S.J. 6TiSCH: Industrial Performance for IPv6 Internet-of-Things Networks. Proc. IEEE 2019, 1153–1165. [Google Scholar] [CrossRef]
- IEEE Standard for Local and Metropolitan Area Networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC Sublayer; IEEE Std 802.15.4e-2012 (Amendment to IEEE Std 802.15.4-2011); IEEE: Piscataway, NJ, USA, 2012; pp. 1–225.
- IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 3: Physical Layer (PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility Networks; IEEE Std 802.15.4g-2012 (Amendment to IEEE Std 802.15.4-2011); IEEE: Piscataway, NJ, USA, 2012; pp. 1–252.
- McCune, E. This Emperor Has No Clothes? IEEE Microwaves Mag. 2013, 14, 48–62. [Google Scholar] [CrossRef]
- Sommer, P.; Maret, Y.; Dzung, D. Low-Power Wide-Area Networks for Industrial Sensing Applications. In Proceedings of the 2018 IEEE International Conference on Industrial Internet (ICII), Seattle, WA, USA, 21–23 October 2018; pp. 23–32. [Google Scholar] [CrossRef]
- Sum, C.; Kojima, F.; Harada, H. Coexistence of homogeneous and heterogeneous systems for IEEE 802. In 15.4g smart utility networks. In Proceedings of the 2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Aachen, Germany, 3–6 May 2011; pp. 510–520. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.; Orlik, P.; Nagai, Y.; Watanabe, K.; Sumi, T. Coexistence of 802.11ah and 802.15.4g networks. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Munoz, J.; Chang, T.; Vilajosana, X.; Watteyne, T. Evaluation of IEEE802.15.4g for Environmental Observations. Sensors 2018, 18, 3468. [Google Scholar] [CrossRef] [PubMed]
- Munoz, J.; Riou, E.; Vilajosana, X.; Muhlethaler, P.; Watteyne, T. Overview of IEEE802.15.4g OFDM and its Applicability to Smart Building Applications. In Proceedings of the Wireless Days Conference (WD), Dubai, UAE, 3–5 April 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Munoz, J.; Muhlethaler, P.; Vilajosana, X.; Watteyne, T. Why Channel Hopping Makes Sense, even with IEEE802.15.4 OFDM at 2.4 GHz. In Proceedings of the Global IoT Summit (GIoTS), Bilbao, Spain, 4–7 June 2018. [Google Scholar]
- Vilajosana, X.; Tuset, P.; Watteyne, T.; Pister, K. OpenMote: Open-Source Prototyping Platform for the Industrial IoT. In Ad Hoc Networks; Mitton, N., Kantarci, M.E., Gallais, A., Papavassiliou, S., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 211–222. [Google Scholar]
- Tuset-Peiró, P.; Vilajosana, X.; Watteyne, T. OpenMote+: A Range-Agile Multi-Radio Mote. In Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks, EWSN ’16, Graz, Austria, 15–17 February 2016; pp. 333–334. [Google Scholar]
- Texas Instruments. CC2538 Powerful Wireless Microcontroller System-On-Chip for 2.4-GHz IEEE 802.15.4, 6LoWPAN, and ZigBee® Applications (Rev. SWRS096D). 2015. Available online: http://www.ti.com/lit/ds/symlink/cc2538.pdf (accessed on 17 September 2019).
- Atmel. AT86RF215 Device Family: Sub-1GHz/2.4GHz Transceiver and I/Q Radio for IEEE Std 802.15.4-2015 (Rev. 42415E). 2016. Available online: http://ww1.microchip.com/downloads/en/devicedoc/atmel-42415-wireless-at86rf215_datasheet.pdf (accessed on 17 September 2019).
Type | Mode | Modulation | Coding Rate | Frequency Repetition | Channel/Nominal Bandwidth (kHz) | Total/Data/Pilot Tones | Effective Datarate (kbps) |
---|---|---|---|---|---|---|---|
MCS0 | BPSK | 1/2 | 4x | 100 | |||
OFDM1 | MCS1 | BPSK | 1/2 | 2x | 1200 / 1094 | 104/96/8 | 200 |
MCS2 | OQPSK | 1/2 | 2x | 400 | |||
MCS3 | OQPSK | 1/2 | 0x | 800 | |||
MCS0 | BPSK | 1/2 | 4x | 50 | |||
MCS1 | BPSK | 1/2 | 2x | 100 | |||
OFDM2 | MCS2 | OQPSK | 1/2 | 2x | 800 / 552 | 52/48/4 | 200 |
MCS3 | OQPSK | 1/2 | 0x | 400 | |||
MCS4 | OQPSK | 3/4 | 0x | 600 | |||
MCS5 | 16-QAM | 1/2 | 0x | 800 | |||
MCS1 | BPSK | 1/2 | 2x | 50 | |||
MCS2 | OQPSK | 1/2 | 2x | 100 | |||
MCS3 | OQPSK | 1/2 | 0x | 400 / 281 | 26/24/2 | 200 | |
OFDM3 | MCS4 | OQPSK | 3/4 | 0x | 300 | ||
MCS5 | 16-QAM | 1/2 | 0x | 400 | |||
MCS6 | 16-QAM | 3/4 | 0x | 600 | |||
MCS2 | OQPSK | 1/2 | 2x | 50 | |||
MCS3 | OQPSK | 1/2 | 0x | 100 | |||
OFDM4 | MCS4 | OQPSK | 3/4 | 0x | 200 / 156 | 14/12/2 | 150 |
MCS5 | 16-QAM | 1/2 | 0x | 200 | |||
MCS6 | 16-QAM | 3/4 | 0x | 300 |
Name | Mode | Modulation | Channel Coding | Frequency Repetition | Receiver Sensitivity (dBm) | Effective Data-Rate (kbps) | Channel Bandwidth (kHz) | Abbreviation |
---|---|---|---|---|---|---|---|---|
OQPSK- DSSS | N/A | OQPSK | N/A | N/A | −103 | 250 | 5000 | OQPSK-DSSS |
OFDM Option 1 | MCS1 | BPSK | 1/2 | 2x | −109 | 200 | 1200 | OFDM1-MCS1 |
OFDM Option 2 | MCS2 | QPSK | 1/2 | 2x | −108 | 200 | 800 | OFDM2-MCS2 |
OFDM Option 3 | MCS3 | QPSK | 1/2 | 0x | −107 | 200 | 400 | OFDM3-MCS3 |
OFDM Option 4 | MCS5 | 16-QAM | 1/2 | 0x | −105 | 200 | 200 | OFDM4-MCS5 |
Transmit Power (dBm) | |||||
---|---|---|---|---|---|
RFn_PAX.TXPWR | OQPSK-DSSS | OFDM1-MCS1 | OFDM2-MCS2 | OFDM3-MCS3 | OFDM4-MCS54 |
30 | 15 | 9 | 9 | 9 | 9 |
27 | 14 | 8 | 8 | 8 | 8 |
24 | 12 | 5 | 5 | 5 | 5 |
21 | 9 | 2 | 2 | 2 | 2 |
18 | 6 | −1 | −1 | −1 | −1 |
15 | 3 | −3 | −3 | −3 | −3 |
12 | 0 | −7 | −7 | −7 | −7 |
9 | −3 | −11 | −11 | −11 | −11 |
6 | −6 | −14 | −14 | −14 | −14 |
3 | −9 | −16 | −16 | −16 | −16 |
0 | −12 | −18 | −18 | −18 | −18 |
Interference Type and Packet Length (bytes) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
OFDM1-MCS1 | OFDM2-MCS2 | OFDM3-MCS3 | OFDM4-MCS5 | OQPSK-DSSS | ||||||
20 | 120 | 20 | 120 | 20 | 120 | 20 | 120 | 20 | 120 | |
OFDM1-MCS1 | 1 | 2 | 2 | 3 | 3 | 4 | 2 | 3 | −1 | −1 |
OFDM1-MCS2 | 2 | 4 | 5 | 6 | 5 | 6 | 5 | 7 | −5 | −3 |
OFDM3-MCS3 | 2 | 4 | 5 | 6 | 8 | 9 | 8 | 9 | −5 | −3 |
OFDM4-MCS5 | 5 | 7 | 8 | 10 | 10 | 12 | >12 | >12 | −2 | 0 |
OQPSK-DSSS | 8 | 12 | 8 | 12 | 8 | 12 | 9 | 12 | 6 | 8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuset-Peiró, P.; Vázquez-Gallego, F.; Muñoz, J.; Watteyne, T.; Alonso-Zarate, J.; Vilajosana, X. Experimental Interference Robustness Evaluation of IEEE 802.15.4-2015 OQPSK-DSSS and SUN-OFDM Physical Layers for Industrial Communications. Electronics 2019, 8, 1045. https://doi.org/10.3390/electronics8091045
Tuset-Peiró P, Vázquez-Gallego F, Muñoz J, Watteyne T, Alonso-Zarate J, Vilajosana X. Experimental Interference Robustness Evaluation of IEEE 802.15.4-2015 OQPSK-DSSS and SUN-OFDM Physical Layers for Industrial Communications. Electronics. 2019; 8(9):1045. https://doi.org/10.3390/electronics8091045
Chicago/Turabian StyleTuset-Peiró, Pere, Francisco Vázquez-Gallego, Jonathan Muñoz, Thomas Watteyne, Jesus Alonso-Zarate, and Xavier Vilajosana. 2019. "Experimental Interference Robustness Evaluation of IEEE 802.15.4-2015 OQPSK-DSSS and SUN-OFDM Physical Layers for Industrial Communications" Electronics 8, no. 9: 1045. https://doi.org/10.3390/electronics8091045
APA StyleTuset-Peiró, P., Vázquez-Gallego, F., Muñoz, J., Watteyne, T., Alonso-Zarate, J., & Vilajosana, X. (2019). Experimental Interference Robustness Evaluation of IEEE 802.15.4-2015 OQPSK-DSSS and SUN-OFDM Physical Layers for Industrial Communications. Electronics, 8(9), 1045. https://doi.org/10.3390/electronics8091045