Frequency Selective Degeneration for 6–18 GHz GaAs pHEMT Broadband Power Amplifier Integrated Circuit
Abstract
:1. Introduction
2. Design of the Proposed Broadband PAIC
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kerherve, E.; Demirel, N.; Ghiotto, A.; Larie, A.; Deltimple, N.; Pham, J.M.; Mancuso, Y.; Garrec, P. A Broadband 4.5–15.5-GHz SiGe Power Amplifier With 25.5-dBm Peak Saturated Output Power and 28.7% Maximum PAE. IEEE Trans. Microw. Theory Tech. 2015, 63, 1621–1632. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Lee, W.; Kim, T.; Helaoui, M.; Ghannouchi, F.M.; Yang, Y. 6–18 GHz GaAs pHEMT Broadband Power Amplifier Based on Dual-Frequency Selective Impedance Matching Technique. IEEE Access 2019, 7, 66275–66280. [Google Scholar] [CrossRef]
- Jeong, J.; Yom, I.; Kim, J.; Lee, W.; Lee, C. A 6–18-GHz GaAs Multifunction Chip With 8-bit True Time Delay and 7-bit Amplitude Control. IEEE Trans. Microw. Theory Tech. 2018, 66, 2220–2230. [Google Scholar] [CrossRef]
- de Hek, P.; Van Caekenberghe, K.; van Dijk, R. A 3–14 GHz pseudo-differential distributed low noise amplifier. In Proceedings of the 5th European Microwave Integrated Circuits Conference, Paris, France, 27–28 September 2010; pp. 337–340. [Google Scholar]
- Santhakumar, R.; Thibeault, B.; Higashiwaki, M.; Keller, S.; Chen, Z.; Mishra, U.K.; York, R.A. Two-Stage High-Gain High-Power Distributed Amplifier Using Dual-Gate GaN HEMTs. IEEE Trans. Microw. Theory Tech. 2011, 59, 2059–2063. [Google Scholar] [CrossRef]
- Park, H.; Nam, H.; Choi, K.; Kim, J.; Kwon, Y. A 6–18-GHz GaN Reactively Matched Distributed Power Amplifier Using Simplified Bias Network and Reduced Thermal Coupling. IEEE Trans. Microw. Theory Tech. 2018, 66, 2638–2648. [Google Scholar] [CrossRef]
- Campbell, C.; Lee, C.; Williams, V.; Kao, M.Y.; Tserng, H.Q.; Saunier, P.; Balisteri, T. A Wideband Power Amplifier MMIC Utilizing GaN on SiC HEMT Technology. IEEE J. Solid-State Circuits 2009, 44, 2640–2647. [Google Scholar] [CrossRef]
- Oreja-Gigorro, E.; Pascual, E.D.; Sanchez-Martínez, J.J.; Gil-Heras, M.L.; Bueno-Fernandez, V.; Bodalo-Marquez, A.; Grajal, J. A 6–18 GHz GaN on SiC High Power Amplifier MMIC for Electronic Warfare. In Proceeding of the 13th European Microwave Integrated Circuits Conference (EuMIC), Madrid, Spain, 23–25 September 2018; pp. 85–88. [Google Scholar]
- Meghdadi, M.; Medi, A. Design of 6–18-GHz High-Power Amplifier in GaAs pHEMT Technology. IEEE Trans. Microw. Theory Tech. 2017, 65, 2353–2360. [Google Scholar] [CrossRef]
- Schmid, U.; Sledzik, H.; Schuh, P.; Schroth, J.; Oppermann, M.; Brückner, P.; van Raay, F.; Quay, R.; Seelmann-Eggebert, M. Ultra-Wideband GaN MMIC Chip Set and High Power Amplifier Module for Multi-Function Defense AESA Applications. IEEE Trans. Microw. Theory Tech. 2013, 61, 3043–3051. [Google Scholar] [CrossRef]
- Xia, Q.; Li, D.; Huang, J.; Li, J.; Chang, H.; Sun, B.; Liu, H. A 28 GHz Linear Power Amplifier Based on CPW Matching Networks with Series-Connected DC-Blocking Capacitors. Electronics 2020, 9, 617. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Kang, H.; Lee, H.; Lim, W.; Bae, J.; Koo, H.; Yoon, J.; Hwang, K.C.; Lee, K.Y.; Yang, Y. Broadband InGaP/GaAs HBT Power Amplifier Integrated Circuit Using Cascode Structure and Optimized Shunt Inductor. IEEE Trans. Microw. Theory Tech. 2019, 67, 5090–5100. [Google Scholar] [CrossRef]
- Sharma, T.; Aflaki, P.; Helaoui, M.; Ghannouchi, F.M. Octave Bandwidth Doherty Power Amplifier Using Multiple Resonance Circuit for the Peaking Amplifier. IEEE Trans. Circuits Syst. I Reg. Pap. 2019, 66, 583–593. [Google Scholar]
- Kim, D.-M.; Kim, D.; Jeong, H.-G.; Im, D. A Reconfigurable CMOS Inverter-based Stacked Power Amplifier with Antenna Impedance Mismatch Compensation for Low Power Short-Range Wireless Communications. Electronics 2020, 9, 562. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Yao, Y.; Liu, Z.; Li, M.; Li, T.; Dai, Z. Design of High Efficiency Broadband Continuous Class-F Power Amplifier Using Real Frequency Technique With Finite Transmission Zero. IEEE Access 2018, 6, 61983–61993. [Google Scholar] [CrossRef]
- Lee, W.; Kang, H.; Choi, S.; Lee, S.; Kwon, H.; Hwang, K.; Lee, K.-Y.; Yang, Y. Scaled GaN-HEMT Large-Signal Model Based on EM Simulation. Electronics 2020, 9, 632. [Google Scholar] [CrossRef] [Green Version]
- Sharma, T.; Aflaki, P.; Helaoui, M.; Ghannouchi, F.M. Broadband GaN Class-E Power Amplifier for Load Modulated Delta Sigma and 5G Transmitter Applications. IEEE Access 2018, 6, 4709–4719. [Google Scholar] [CrossRef]
- Lee, S.; Park, H.; Choi, K.; Kwon, Y. A Broadband GaN pHEMT Power Amplifier Using Non-Foster Matching. IEEE Trans. Microw. Theory Tech. 2015, 63, 4406–4414. [Google Scholar] [CrossRef]
- Huang, C.; He, S.; Shi, W.; Song, B. Design of Broadband High-Efficiency Power Amplifiers Based on the Hybrid Continuous Modes With Phase Shift Parameter. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 159–161. [Google Scholar] [CrossRef]
- Amirpour, R.; Darraji, F.; Ghannouchi, F.; Quay, R. Enhancement of the Broadband Efficiency of a Class-J Power Amplifier With Varactor-based Dynamic Load Modulation. IEEE Microw. Wirel. Compon. Lett. 2017, 27, 180–182. [Google Scholar] [CrossRef]
- Saad, P.; Hou, R.; Hellberg, R.; Berglund, B. A 1.8–3.8-GHz Power Amplifier With 40% Efficiency at 8-dB Power Back-Off. IEEE Trans. Microw. Theory Tech. 2018, 66, 4870–4882. [Google Scholar] [CrossRef]
- Liu, B.; Mao, M.; Khanna, D.; Boon, C.; Choi, P.; Fitzgerald, E.A. A Novel 2.6–6.4 GHz Highly Integrated Broadband GaN Power Amplifier. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 37–39. [Google Scholar] [CrossRef]
Main Stage | Drive Stage | ||||||||
---|---|---|---|---|---|---|---|---|---|
200 Ω | 1 pF | 50 Ω | 1 Ω | 4.2 pF | 300 Ω | 1 pF | 126 Ω | 1 Ω | 4.2 pF |
Ref. | Process | Freq. (GHz) | Gain * (dB) | Gain Flatness (dB) | Input Reflection ** (dB) | Output Reflection ** (dB) | *** (dBm) | Flatness (dB) | PAE (%) | Size (mm2) | Structure |
---|---|---|---|---|---|---|---|---|---|---|---|
[1] | 0.13 m SiGe BiCMOS | 4.5–15.5 | 13.8 | ±2.8 | 21.3 | ±2.1 | 11.9–28.7 | 1.96 | Cascode differential | ||
[5] | 0.2 m GaN HEMT | 2.0–18.0 | 19.5 | ±1.5 | + | + | 26.0 | ±2.0 | 5.0–12.0 | 8.0 | Distributed |
[4] | 0.15 m GaAs pHEMT | 3.0–14.0 | 17.0 | ±1.0 | 15.0 | - | - | 7.44 | Distributed | ||
[3] | 0.25 m GaAs pHEMT | 6.0–18.0 | 12.0 | ±1.0 | + | + | 15.0 | ±1.5 | - | 5.2 | Two-stage |
[2] | 0.15 m GaAs pHEMT | 6.0–18.0 | 17.4 | ±1.0 | + | - | 19.2 | ±0.9 | 13.0–21.7 | 0.97 | Two-stage |
This work | 0.15 m GaAs pHEMT | 6.0–18.0 | 16.1 | ±1.1 | 20.5 | ±0.8 | 12.4–20.3 | 0.89 | Two-stage |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.; Yoo, E.; Oh, H.; Koo, H.; Shin, J.; Hwang, K.C.; Lee, K.-Y.; Yang, Y. Frequency Selective Degeneration for 6–18 GHz GaAs pHEMT Broadband Power Amplifier Integrated Circuit. Electronics 2020, 9, 1588. https://doi.org/10.3390/electronics9101588
Oh S, Yoo E, Oh H, Koo H, Shin J, Hwang KC, Lee K-Y, Yang Y. Frequency Selective Degeneration for 6–18 GHz GaAs pHEMT Broadband Power Amplifier Integrated Circuit. Electronics. 2020; 9(10):1588. https://doi.org/10.3390/electronics9101588
Chicago/Turabian StyleOh, Sungjae, Eunjoo Yoo, Hansik Oh, Hyungmo Koo, Jaekyung Shin, Keum Cheol Hwang, Kang-Yoon Lee, and Youngoo Yang. 2020. "Frequency Selective Degeneration for 6–18 GHz GaAs pHEMT Broadband Power Amplifier Integrated Circuit" Electronics 9, no. 10: 1588. https://doi.org/10.3390/electronics9101588
APA StyleOh, S., Yoo, E., Oh, H., Koo, H., Shin, J., Hwang, K. C., Lee, K. -Y., & Yang, Y. (2020). Frequency Selective Degeneration for 6–18 GHz GaAs pHEMT Broadband Power Amplifier Integrated Circuit. Electronics, 9(10), 1588. https://doi.org/10.3390/electronics9101588