Reduced Tilting Effect of Smartphone CMOS Image Sensor in Visible Light Indoor Positioning
Abstract
:1. Introduction
2. System Architecture
2.1. Transmitter Section
2.1.1. Transmitter Design
2.1.2. Transmitter LED Modulation
2.2. Receiver Section
2.2.1. Rolling Shutter Operation of Smartphone Embedded CMOS Image Sensor
2.2.2. Smartphone Camera Configuration
2.2.3. Mechanism of LED-ID Feature Extraction and Selection
2.3. LED-ID Identification Process
Support Vector Machine
3. Positioning Method
3.1. Overview of Proposed System
3.2. Positioning Algorithm
3.3. Smartphone Rotation Model
4. Experiment and Results
4.1. Experimental Setup
4.2. Experimental Results
4.2.1. LED-ID Recognition with Different Angle
4.2.2. Improved LED-ID Recognition Rate with Different Angle
4.2.3. Performance Analysis of Positioning Accuracy
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- He, S.; Chan, S.H.G. Wi-Fi fingerprint-based indoor positioning: Recent advances and comparisons. IEEE Commun. Surv. Tutor. 2015, 18, 466–490. [Google Scholar] [CrossRef]
- Errington, A.F.; Daku, B.L.; Prugger, A.F. Initial position estimation using RFID tags: A least-squares approach. IEEE Trans. Instrum. Meas. 2010, 59, 2863–2869. [Google Scholar] [CrossRef]
- Cazzorla, A.; De Angelis, G.; Moschitta, A.; Dionigi, M.; Alimenti, F.; Carbone, P. A 5.6-GHz UWB position measurement system. IEEE Trans. Instrum. Meas. 2012, 62, 675–683. [Google Scholar] [CrossRef]
- Konings, D.; Budel, A.; Alam, F.; Noble, F. Entity tracking within a Zigbee based smart home. In Proceedings of the 2016 23rd International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Nanjing, China, 28–30 November 2016; pp. 1–6. [Google Scholar]
- Çiftler, B.S.; Kadri, A.; Güvenç, I. Fundamental bounds on RSS-based wireless localization in passive UHF RFID systems. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, 9–12 March 2015; pp. 1356–1361. [Google Scholar]
- Kim, S.J.; Kim, B.K. Accurate hybrid global self-localization algorithm for indoor mobile robots with two-dimensional isotropic ultrasonic receivers. IEEE Trans. Instrum. Meas. 2011, 60, 3391–3404. [Google Scholar] [CrossRef]
- Pham, N.Q.; Rachim, V.P.; Chung, W.Y. High-accuracy VLC-based indoor positioning system using multi-level modulation. Opt. Express 2019, 27, 7568–7584. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Lo, A.; Niemegeers, I. A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Tutor. 2009, 11, 13–32. [Google Scholar] [CrossRef] [Green Version]
- Rajagopal, N.; Lazik, P.; Rowe, A. Visual light landmarks for mobile devices. In Proceedings of the IEEE 13th International Symposium on Information Processing in Sensor Networks, Berlin, Germany, 15–17 April 2014; pp. 249–260. [Google Scholar]
- Kuo, Y.S.; Pannuto, P.; Hsiao, K.J.; Dutta, P. Luxapose: Indoor positioning with mobile phones and visible light. In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, HI, USA, 7–11 September 2014; pp. 447–458. [Google Scholar]
- Yang, Z.; Wang, Z.; Zhang, J.; Huang, C.; Zhang, Q. Wearables can afford: Light-weight indoor positioning with visible light. In Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services, Florence, Italy, 18–22 May 2015; pp. 317–330. [Google Scholar]
- Huang, H.; Feng, L.; Ni, G.; Yang, A. Indoor imaging visible light positioning with sampled sparse light source and mobile device. Chin. Opt. Lett. 2016, 14, 090602. [Google Scholar] [CrossRef]
- Xie, C.; Guan, W.; Wu, Y.; Fang, L.; Cai, Y. The LED-ID detection and recognition method based on visible light positioning using proximity method. IEEE Photonics J. 2018, 10, 1–16. [Google Scholar] [CrossRef]
- Guan, W.; Zhang, X.; Wu, Y.; Xie, Z.; Li, J.; Zheng, J. High precision indoor visible light positioning algorithm based on double LEDs using CMOS image sensor. Appl. Sci. 2019, 9, 1238. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Chen, K.; Tan, G.; Lu, M.; Liu, Y.; Wu, J.; He, T. LIPS: A light intensity–based positioning system for indoor environments. ACM Trans. Sensor Netw. (TOSN) 2016, 12, 1–27. [Google Scholar] [CrossRef]
- Li, Z.; Yang, A.; Lv, H.; Feng, L.; Song, W. Fusion of visible light indoor positioning and inertial navigation based on particle filter. IEEE Photonics J. 2017, 9, 1–13. [Google Scholar] [CrossRef]
- Yasir, M.; Ho, S.W.; Vellambi, B.N. Indoor positioning system using visible light and accelerometer. J. Lightwave Technol. 2014, 32, 3306–3316. [Google Scholar] [CrossRef]
- Kim, D.; Park, J.K.; Kim, J.T. Three-dimensional VLC positioning system model and method considering receiver tilt. IEEE Access 2019, 7, 132205–132216. [Google Scholar] [CrossRef]
- Mai, D.H.; Le, H.D.; Pham, T.V.; Pham, A.T. Design and Performance Evaluation of Large-Scale VLC-Based Indoor Positioning Systems Under Impact of Receiver Orientation. IEEE Access 2020, 8, 61891–61904. [Google Scholar] [CrossRef]
- Jeong, E.-M.; Yang, S.-H.; Kim, H.-S.; Han, S.-K. Tilted receiver angle error compensated indoor positioning system based on visible light communication. Electron. Lett. 2013, 49, 890–892. [Google Scholar] [CrossRef]
- Microchip. Available online: https://www.microchip.com/wwwproducts/en/atmega328p (accessed on 1 October 2020).
- Vishay. Available online: https://www.alldatasheet.com/datasheet-pdf/pdf/436852/VISHAY/SIHP24N65E.html (accessed on 1 October 2020).
- Berman, S.M.; Greenhouse, D.S.; Bailey, I.L.; Clear, R.D.; Raasch, T.W. Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources. Optom. Vis. Sci. 1991, 68, 645–662. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, S.; Koutroumbas, K. Pattern Recognition, 4th ed.; Academic: St. Louis, MO, USA, 2010; pp. 22–34. [Google Scholar]
- Patonis, P.; Patias, P.; Tziavos, I.N.; Rossikopoulos, D.; Margaritis, K.G. A fusion method for combining low-cost IMU/magnetometer outputs for use in applications on mobile devices. Sensors 2018, 18, 2616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kok, M.; Hol, J.D.; Schön, T.B. Using inertial sensors for position and orientation estimation. arXiv 2017, arXiv:1704.06053. [Google Scholar]
- Ayub, S.; Bahraminasab, A.; Honary, B. A sensor fusion method for smart phone orientation estimation. PGNET 2012. In Proceedings of the 13th Annual Postgraduate Symposium on the Convergence of Telecommunications, Networking & Broadcasting, Liverpool, UK, 25–26 June 2012. [Google Scholar]
- Kuipers, J.B.Q. A Primer with Applications to Orbits, Aerospace, and Virtual Reality; Princeton Univ. Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Soltani, M.D.; Purwita, A.A.; Zeng, Z.; Haas, H.; Safari, M. Modeling the random orientation of mobile devices: Measurement, analysis and LiFi use case. IEEE Trans. Commun. 2018, 67, 2157–2172. [Google Scholar] [CrossRef] [Green Version]
Parameters Name | Values |
---|---|
LED Model | BSDW-010, Color Temp. 5300~6000 K |
LED Size | 15 cm |
LED Power | 15 W |
Number of LEDs | 4 |
MCU | Atmega328p |
MOSFET Chip | P24N65E [22] |
Resistance | 10 kΩ |
Resistance | 55 Ω |
Modulation Scheme | PWM |
Parameters Name | Values |
---|---|
Image Sensor | Rolling Shutter CMOS Sensor |
Shutter Speed | 32 kHz |
ISO | 500 |
Frame Rate | 30 fps |
Smartphone Model | Samsung Galaxy S8 |
Camera | Front Camera with 8 megapixels |
Focal Length | 24 mm |
Aperture | 1.7 |
Camera API | Camera 2 with API Level 25 |
Camera Image Resolution | 1080 × 920 pixels |
LED-ID | Bright Strip no. | Duty Ratio (%) | Frequency (kHz) | Area of LED (pixel) |
---|---|---|---|---|
ID-1 | 3 | 0.400 | 2 | 5794 |
ID-2 | 3 | 0.500 | 3 | 6712 |
ID-3 | 4 | 0.700 | 4 | 8584 |
ID-4 | 4 | 0.800 | 5 | 10,737 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.H.; Sejan, M.A.S.; Kim, J.-J.; Chung, W.-Y. Reduced Tilting Effect of Smartphone CMOS Image Sensor in Visible Light Indoor Positioning. Electronics 2020, 9, 1635. https://doi.org/10.3390/electronics9101635
Rahman MH, Sejan MAS, Kim J-J, Chung W-Y. Reduced Tilting Effect of Smartphone CMOS Image Sensor in Visible Light Indoor Positioning. Electronics. 2020; 9(10):1635. https://doi.org/10.3390/electronics9101635
Chicago/Turabian StyleRahman, Md Habibur, Mohammad Abrar Shakil Sejan, Jong-Jin Kim, and Wan-Young Chung. 2020. "Reduced Tilting Effect of Smartphone CMOS Image Sensor in Visible Light Indoor Positioning" Electronics 9, no. 10: 1635. https://doi.org/10.3390/electronics9101635
APA StyleRahman, M. H., Sejan, M. A. S., Kim, J. -J., & Chung, W. -Y. (2020). Reduced Tilting Effect of Smartphone CMOS Image Sensor in Visible Light Indoor Positioning. Electronics, 9(10), 1635. https://doi.org/10.3390/electronics9101635