Research on Optimization of VR Welding Course Development with ANP and Satisfaction Evaluation
Abstract
:1. Introduction
- (1)
- Construct the ability indices of a welding practice course;
- (2)
- Discuss the importance of the ability indices of the welding practice course;
- (3)
- Understand the feasibility of VR technology-assisted welding course teaching;
- (4)
- Develop a VR welding course;
- (5)
- Discuss the effectiveness of students’ learning in the VR welding course.
2. Literature Review
2.1. Development and Application of Welding Technology
2.2. Welding Technology Training
2.3. VR Technology Development
2.3.1. Interaction
2.3.2. Immersion
2.3.3. Imagination
2.4. Integration of VR into Education
3. Research Design and Implementation
3.1. Research Design
3.2. Research Methods
3.2.1. Fuzzy Delphi method (FDM)
3.2.2. ANP
- (1)
- Establish the problem structure
- (2)
- Pairwise comparison of decision criteria
- (3)
- Form a supermatrix
3.3. Research Subjects
3.4. Research Tools
3.5. Validity and Reliability
4. Results and Discussion
4.1. Analysis of Fuzzy Delphi Method Expert Questionnaire
4.1.1. Analysis of Suitability of the Ability Indices of the Main Dimensions
4.1.2. Analysis of the Suitability of Detailed Evaluation Indices
4.2. ANP Expert Questionnaire Survey and Analysis
4.2.1. ANP Weighted Analysis of the Feasibility of VR-Assisted Welding Teaching
4.2.2. ANP Weighted Analysis of the Importance of the Ability Indices of the Welding Course
4.3. Planning and Development of the VR Welding Course
4.3.1. Comprehensive Analysis of Ability Indices in the Welding Course
- (1)
- First quadrant: priority planning
- (2)
- Second quadrant: feasibility planning
- (3)
- Third quadrant: importance planning
- (4)
- Fourth quadrant: additional planning
4.3.2. VR Welding Course Development
4.4. Analysis of VR Welding Course Development and Implementation Effect
4.4.1. Analysis of Learning Effects of Students Taking the VR Welding Course
- (1)
- Analysis of the demonstration of students’ welding ability
- (2)
- Scores of VR equipment-assisted learning satisfaction
4.4.2. VR Welding Course Implementation and Student Feedback
4.5. General Discussion
4.5.1. The Student-Centered VR Integrated Welding Training Course Design Can Provide Students with a Safe and Efficient Learning Environment
4.5.2. VR Integrated Welding Training Facilitates Students’ Learning and Demonstration of Welding Ability
4.5.3. Students’ High Acceptance of Integrating VR Technology into the Teaching of the Welding Course
4.5.4. High Interaction of the VR Welding Course Effectively Enhanced Students Welding Ability
5. Conclusions and Suggestions
5.1. Conclusions
5.1.1. The VR Welding Course Includes 8 Ability Indices and 30 Evaluation Indices
5.1.2. Assisted “Welding Construction” Ability Index Teaching Is Best for the Relative Feasibility of ANP of VR-Assisted Welding Teaching
5.1.3. Best Feasibility of VR Technology “Interaction” in Assisting Welding Teaching
5.1.4. The Ability Index of “Welding Construction” Is Most Important for the Relative Importance of ANP of the Ability Indices of the VR Welding Course
5.1.5. The VR Welding Course Allows Students to Express Significant Positive Responses to the Learning of Ability Indices and Ability Demonstration
5.1.6. The Majority of Students Expressed Significant Positive Feedback for Learning Satisfaction with VR-assisted Welding Course Teaching
5.2. Suggestions
5.2.1. Take the Importance and Feasibility of the Ability Indices Summarized in this Study as an Important Reference for VR Welding Course Planning
5.2.2. Train Teachers in the Application of VR Knowledge in Assisting Practical Teaching
5.2.3. Discuss the Experimental Teaching of Related Research Topics
Author Contributions
Funding
Conflicts of Interest
Appendix A
VR | Welding | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
V-1 | V-2 | V-3 | W-1 | W-2 | W-3 | W-4 | W-5 | W-6 | W-7 | W-8 | ||
VR | V-1 | 0.000 | 0.000 | 0.000 | 0.178 | 0.170 | 0.174 | 0.175 | 0.180 | 0.184 | 0.175 | 0.175 |
V-2 | 0.000 | 0.000 | 0.000 | 0.179 | 0.181 | 0.183 | 0.177 | 0.183 | 0.172 | 0.175 | 0.166 | |
V-3 | 0.000 | 0.000 | 0.000 | 0.162 | 0.168 | 0.162 | 0.167 | 0.157 | 0.163 | 0.170 | 0.178 | |
Welding | W-1 | 0.201 | 0.201 | 0.204 | 0.000 | 0.080 | 0.081 | 0.081 | 0.000 | 0.069 | 0.081 | 0.000 |
W-2 | 0.000 | 0.195 | 0.198 | 0.090 | 0.000 | 0.075 | 0.000 | 0.075 | 0.064 | 0.075 | 0.075 | |
W-3 | 0.198 | 0.197 | 0.000 | 0.096 | 0.079 | 0.000 | 0.080 | 0.080 | 0.068 | 0.079 | 0.080 | |
W-4 | 0.211 | 0.210 | 0.213 | 0.102 | 0.084 | 0.085 | 0.000 | 0.085 | 0.073 | 0.085 | 0.085 | |
W-5 | 0.000 | 0.000 | 0.189 | 0.096 | 0.079 | 0.080 | 0.080 | 0.000 | 0.069 | 0.000 | 0.080 | |
W-6 | 0.197 | 0.197 | 0.000 | 0.097 | 0.080 | 0.080 | 0.080 | 0.081 | 0.000 | 0.080 | 0.081 | |
W-7 | 0.193 | 0.000 | 0.196 | 0.000 | 0.079 | 0.079 | 0.080 | 0.080 | 0.068 | 0.000 | 0.080 | |
W-8 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.080 | 0.080 | 0.069 | 0.080 | 0.000 |
Welding | |||||||||
---|---|---|---|---|---|---|---|---|---|
W-1 | W-2 | W-3 | W-4 | W-5 | W-6 | W-7 | W-8 | ||
Welding | W-1 | 0.205 | 0.153 | 0.183 | 0.208 | 0.000 | 0.176 | 0.000 | 0.000 |
W-2 | 0.183 | 0.000 | 0.154 | 0.000 | 0.188 | 0.000 | 0.188 | 0.235 | |
W-3 | 0.195 | 0.139 | 0.000 | 0.158 | 0.199 | 0.163 | 0.199 | 0.000 | |
W-4 | 0.218 | 0.150 | 0.174 | 0.000 | 0.213 | 0.174 | 0.213 | 0.266 | |
W-5 | 0.000 | 0.137 | 0.163 | 0.155 | 0.000 | 0.161 | 0.000 | 0.000 | |
W-6 | 0.199 | 0.142 | 0.164 | 0.163 | 0.201 | 0.000 | 0.201 | 0.251 | |
W-7 | 0.000 | 0.138 | 0.163 | 0.159 | 0.199 | 0.161 | 0.000 | 0.248 | |
W-8 | 0.000 | 0.140 | 0.000 | 0.157 | 0.000 | 0.165 | 0.200 | 0.000 |
Welding | |||||||||
---|---|---|---|---|---|---|---|---|---|
W-1 | W-2 | W-3 | W-4 | W-5 | W-6 | W-7 | W-8 | ||
Welding | W-1 | 0.205 | 0.153 | 0.183 | 0.208 | 0.000 | 0.176 | 0.000 | 0.000 |
W-2 | 0.183 | 0.000 | 0.154 | 0.000 | 0.188 | 0.000 | 0.188 | 0.235 | |
W-3 | 0.195 | 0.139 | 0.000 | 0.158 | 0.199 | 0.163 | 0.199 | 0.000 | |
W-4 | 0.218 | 0.150 | 0.174 | 0.000 | 0.213 | 0.174 | 0.213 | 0.266 | |
W-5 | 0.000 | 0.137 | 0.163 | 0.155 | 0.000 | 0.161 | 0.000 | 0.000 | |
W-6 | 0.199 | 0.142 | 0.164 | 0.163 | 0.201 | 0.000 | 0.201 | 0.251 | |
W-7 | 0.000 | 0.138 | 0.163 | 0.159 | 0.199 | 0.161 | 0.000 | 0.248 | |
W-8 | 0.000 | 0.140 | 0.000 | 0.157 | 0.000 | 0.165 | 0.200 | 0.000 |
References
- Chen, T.-S. Talking about Welding Safety and Health. Ind. Saf. Health Mon. 1995, 11, 44–49. [Google Scholar]
- Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Int. Forum Respir. Res. 2004, 16, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Common Wealth Magazine. The rise of offshore wind power-to create a new level of energy in Taiwan. Common Wealth Mag. 2019, 673, 10. [Google Scholar]
- David, D.; Monroe, R.; Thomas, E. Exploring the Need to Include Cast Carbon Steels in Welding Procedure Specifications; American Welding Society: Miami, FL, USA, 2015. [Google Scholar]
- Skill Evaluation Center of Workforce Development Agency. Skill Evaluation 2011–2019 Number of Applicants, Qualified, and Qualification Rate of Applicants. Retrieved from Skill Evaluation Center of Workforce Development Agency, Ministry of Labor, Taiwan. 2020. Available online: https://www.wdasec.gov.tw/News_Content.aspx?n=23A105FE84353704&sms=CA0630966F34DA45&s=C8325D4465DF9769 (accessed on 13 May 2020).
- Zhang, Y.; Zhang, J.; Cheng, S. Application of welding simulator trainer in aluminum welder training. Electr. Weld. Mach. 2016, 46, 127–130. [Google Scholar]
- Liu, Y. Toward intelligent welding robots: Virtualized welding based learning of human welder behaviors. Weld. World 2016, 60, 719–729. [Google Scholar] [CrossRef]
- DePape, A.M.; Barnes, M.; Petryschuk, J. Students’ Experiences in Higher Education with Virtual and Augmented Reality: A Qualitative Systematic Review. Innov. Pract. High. Educ. 2019, 3, 22–57. [Google Scholar]
- Price, A.H.; Kuttolamadom, M.; Obeidat, S. Using Virtual Reality Welding to Improve Manufacturing Process Education; American Society for Engineering Education: Washington, DC, USA, 2019. [Google Scholar]
- Abulrub, A.-H.G.; Attridge, A.N.; Williams, M.A. Virtual reality in engineering education: The future of creative learning. In Proceedings of the Global Engineering Education Conference, (EDUCON), Amman, Jordan, 4–6 April 2011. [Google Scholar]
- Kriz, Z.; Prochaska, R.; Morrow, C.A.; Vasquez, C.; Wu, H. Unreal III based 3-D virtual models for training at nuclear power plants. In Proceedings of the 1st International Nuclear & Renewable Energy Conference (INREC), Amman, Jordan, 21–24 March 2010. [Google Scholar]
- Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [Google Scholar] [CrossRef]
- Kang, H.; Kim, J.A. Study on Design and Case Analysis of Virtual Reality Contents Developer Training based on Industrial Requirements. Electronics 2020, 9, 437. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Z. Welding; New Wun Ching Developmental Publishing: Taipei, Taiwan, 2005. [Google Scholar]
- Reisgen, U.; Mann, S.; Middeldorf, K.; Sharma, R.; Buchholz, G.; Willms, K. Connected, digitalized welding production—Industrie 4.0 in gas metal arc welding. Weld. World 2019, 63, 1121–1131. [Google Scholar] [CrossRef]
- Antonini, J.M.; Santamaria, A.B.; Jenkins, N.T.; Albini, E.; Lucchini, R. Fate of manganese associated with the inhalation of welding fumes: Potential neurological effects. Neuro Toxicol. 2006, 27, 304–310. [Google Scholar] [CrossRef]
- Meo, S.A.; Al-Khlaiwi, T. Health hazards of welding fumes. Saudi Med. J. 2003, 24, 1176–1182. [Google Scholar] [PubMed]
- Torres-Treviño, L.M.; Reyes-Valdes, F.A.; López, V.; Praga-Alejo, R. Multi-objective optimization of a welding process by the estimation of the Pareto optimal set. Expert Syst. Appl. 2011, 38, 8045–8053. [Google Scholar] [CrossRef]
- Tang, Y.M.; Au, K.M.; Lau, H.C.W.; Ho, G.T.S.; Wu, C.H. Evaluating the effectiveness of learning design with mixed reality (MR) in higher education. Virtual Real. 2020, 1–11. [Google Scholar] [CrossRef]
- Burdea, G.C.; Coiffet, P. Virtual Reality Technology; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Vince, J. Virtual Reality Systems; Addison Wesley Longman: Boston, MA, USA, 1995. [Google Scholar]
- Liang, C.; Lee, E. The development and types of virtual reality. Audio-Vis. Educ. Bimon. 1998, 40, 18–26. [Google Scholar]
- Liaw, S.S.; Huang, H.M.; Lai, C.M. A Study of Virtual Reality and Problem-Based Learning Applied in Mobile Medical Education. Chin. J. Sci. Educ. 2011, 19, 237–256. [Google Scholar]
- Friedl, R.; Preisack, M.B.; Klas, W.; Rose, T.; Stracke, S.; Quast, K.J. Virtual reality and 3D visualizations in heart surgery education. Heart Surg. Forum 2002, 5, E17–E21. [Google Scholar]
- Monahan, T.; McArdle, G.; Bertolotto, M. Virtual reality for collaborative e-learning. Comput. Educ. 2008, 50, 1339–1353. [Google Scholar] [CrossRef]
- Temkin, B.; Acosta, E.; Hatfield, P.; Onal, E.; Tong, A. Web-based threedimensional virtual body structures: W3DVBS. J. Am. Med. Inform. Assoc. 2002, 9, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, F.; Pierce, J.; Vergara, V.M.; Coulter, R.; Saland, L.; Caudell, T.P. The effect of degree of immersion upon learning performance in virtual reality simulations for medical education. Stud. Health Technol. Inform. 2007, 125, 155–160. [Google Scholar]
- Krueger, M.K. Artificial Reality II; Addison-Wesley Professional: Boston, MA, USA, 1991. [Google Scholar]
- Brenton, H.; Hernandez, J.; Bello, F.; Strutton, P.; Purkayastha, S.; Firth, T. Using multimedia and Web3D to enhance anatomy teaching. Comput. Educ. 2007, 49, 32–53. [Google Scholar] [CrossRef]
- Berni, A.; Borgianni, Y. Applications of Virtual Reality in Engineering and Product Design: Why, What, How, When and Where. Electronics 2020, 9, 1064. [Google Scholar] [CrossRef]
- Stone, R.T.; Watts, K.P.; Zhong, P. Virtual reality integrated welder training. Weld. J. 2011, 90, 136–141. [Google Scholar]
- Byrd, A.P.; Anderson, R.; Stone, R. The use of virtual welding simulators to evaluate experienced welders. Weld. J. 2015, 94, 389–395. [Google Scholar]
- Stone, R.T.; McLaurin, E.; Zhong, P.; Watts, K.P. Full virtual reality vs. integrated virtual reality training in welding. Weld. J. 2013, 92, 167–174. [Google Scholar]
- Wu, C.T. Educational Policy Analysis: Concepts, Methods, and Applications; Higher Education: Taipei, Taiwan, 2008. [Google Scholar]
- Warith, M.F.A. Assessment of Green IT/IS Within the Aviation Industry Using the Analytic Network Process Approach. Int. J. Hosp. Tour. Syst. 2019, 12, 13. [Google Scholar]
- Saaty, T.L. Decision Making with Dependence and Feedback; Rws publications: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Chung, C.C.; Chao, L.C.; Chen, C.H.; Lou, S.J. Evaluation of interactive website design indicators for e-entrepreneurship. Sustainability 2016, 8, 354. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.C.; Chao, L.C.; Lou, S.J. The establishment of a green supplier selection and guidance mechanism with the ANP and IPA. Sustainability 2016, 8, 259. [Google Scholar] [CrossRef] [Green Version]
- Peters, C.; Postlethwaite, D.; Wallace, M.W. Systems and Methods Providing Enhanced Education and Training in a Virtual Reality Environment. U.S. Patent No. 10,249,215, 8 March 2016. [Google Scholar]
Year of Examination | Number of Applicants | Number of Qualified | Qualification Rate of Applicants |
---|---|---|---|
2016 | 1132 | 662 | 58.5% |
2017 | 1221 | 876 | 71.7% |
2018 | 1412 | 858 | 60.8% |
2019 | 1646 | 960 | 58.3% |
Expert No. | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title * | 1 | 4 | 2 | 5 | 7 | 2 | 7 | 2 | 3 | 6 | 3 | 6 | 8 | 1 | 2 | - |
Seniority (Year) | 16 | 18 | 5 | 16 | 8 | 8 | 9 | 6 | 5 | 12 | 7 | 11 | 14 | 17 | 10 | - |
Academia | V | V | V | V | V | V | V | V | 8 | |||||||
Industry | V | V | V | V | V | V | V | 7 | ||||||||
Welding Expertise | V | V | V | V | V | V | V | V | V | V | 10 | |||||
VR Expertise | V | V | V | V | V | V | V | V | 8 |
No | Items of the Main Dimensions | Leftmost Value | Rightmost Value | Total Value | Ranking |
---|---|---|---|---|---|
W-1 | Map reading and drawing | 0.361 | 0.832 | 0.735 | 2 |
W-2 | Operation preparation | 0.418 | 0.783 | 0.683 | 8 |
W-3 | Test material processing and combination | 0.374 | 0.820 | 0.723 | 6 |
W-4 | Welding construction | 0.321 | 0.869 | 0.774 | 1 |
W-5 | Weld bead slag removal | 0.370 | 0.823 | 0.727 | 5 |
W-6 | Welding inspection | 0.366 | 0.828 | 0.731 | 3 |
W-7 | Industrial safety and health | 0.375 | 0.820 | 0.723 | 6 |
W-8 | Professional ethics of welding personnel | 0.368 | 0.826 | 0.729 | 4 |
NO. | Main Dimension | Detailed Item of Evaluation Index | Leftmost Value | Rightmost Value | Total Value | Ranking | Total Ranking |
---|---|---|---|---|---|---|---|
W-1 | Map reading and drawing | (1-1) Skill code and welding position | 0.361 | 0.832 | 0.735 | 1 | 12 |
(1-2) Welding construction drawing | 0.361 | 0.832 | 0.735 | 1 | 12 | ||
W-2 | Operation preparation | (2-1) Material preparation | 0.425 | 0.776 | 0.676 | 1 | 27 |
(2-2) Equipment preparation | 0.427 | 0.774 | 0.674 | 2 | 28 | ||
(2-3) Site preparation | 0.464 | 0.739 | 0.638 | 3 | 30 | ||
W-3 | Test material processing and combination | (3-1) Test material cleaning | 0.381 | 0.814 | 0.716 | 1 | 16 |
(3-2) Weld filing and grinding | 0.429 | 0.772 | 0.672 | 4 | 29 | ||
(3-3) Combination | 0.383 | 0.812 | 0.714 | 2 | 20 | ||
(3-4) False welding (temporary welding) | 0.404 | 0.793 | 0.695 | 3 | 24 | ||
W-4 | Welding construction | (4-1) Construction preparation | 0.396 | 0.801 | 0.703 | 9 | 23 |
(4-2) Current adjustment | 0.326 | 0.865 | 0.769 | 1 | 1 | ||
(4-3) Flat welding butt joint | 0.418 | 0.797 | 0.690 | 10 | 25 | ||
(4-4) Horizontal welding butt joint | 0.372 | 0.826 | 0.727 | 8 | 15 | ||
(4-5) Vertical welding butt joint | 0.349 | 0.844 | 0.747 | 7 | 9 | ||
(4-6) Overhead welding butt joint | 0.341 | 0.850 | 0.754 | 3 | 4 | ||
(4-7) Vertical fixed butt joint of pipe axis | 0.341 | 0.850 | 0.754 | 3 | 4 | ||
(4-8) Horizontal fixed butt joint of pipe axis | 0.341 | 0.850 | 0.754 | 3 | 4 | ||
(4-9) 45° fixed butt joint of pipe axis | 0.334 | 0.857 | 0.762 | 2 | 3 | ||
(4-10) Defect prevention and improvement | 0.342 | 0.851 | 0.754 | 3 | 4 | ||
W-5 | Weld bead slag removal | (5-1)Slag removal between weld beads and surface slag removal | 0.344 | 0.848 | 0.752 | 1 | 8 |
W-6 | Welding inspection | (6-1) Visual inspection | 0.396 | 0.804 | 0.704 | 3 | 22 |
(6-2) Mechanical inspection | 0.379 | 0.816 | 0.719 | 2 | 17 | ||
(6-3) Ray examination | 0.374 | 0.820 | 0.723 | 1 | 16 | ||
W-7 | Industrial safety and health | (7-1) Understand occupational safety and health regulations | 0.419 | 0.779 | 0.680 | 4 | 26 |
(7-2) Understand the protection of safety and health | 0.381 | 0.814 | 0.716 | 3 | 18 | ||
(7-3) Electric shock prevention and first aid | 0.326 | 0.865 | 0.769 | 1 | 1 | ||
(7-4) Disaster prevention and control | 0.365 | 0.828 | 0.732 | 2 | 14 | ||
W-8 | Professional ethics of welding personnel | (8-1) Professional dedication | 0.351 | 0.841 | 0.745 | 1 | 10 |
(8-2) Work environment maintenance | 0.385 | 0.811 | 0.713 | 3 | 21 | ||
(8-3) Professional quality | 0.359 | 0.835 | 0.738 | 2 | 11 |
VR | Welding | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
V-1 | V-2 | V-3 | W-1 | W-2 | W-3 | W-4 | W-5 | W-6 | W-7 | W-8 | ||
VR | V-1 | 0.000 | 0.000 | 0.000 | 0.343 | 0.327 | 0.335 | 0.337 | 0.346 | 0.355 | 0.336 | 0.337 |
V-2 | 0.000 | 0.000 | 0.000 | 0.346 | 0.350 | 0.353 | 0.341 | 0.352 | 0.331 | 0.336 | 0.320 | |
V-3 | 0.000 | 0.000 | 0.000 | 0.311 | 0.323 | 0.312 | 0.322 | 0.302 | 0.314 | 0.328 | 0.343 | |
Welding | W-1 | 0.201 | 0.201 | 0.204 | 0.000 | 0.167 | 0.168 | 0.168 | 0.000 | 0.144 | 0.168 | 0.000 |
W-2 | 0.000 | 0.195 | 0.198 | 0.188 | 0.000 | 0.156 | 0.000 | 0.157 | 0.134 | 0.156 | 0.157 | |
W-3 | 0.198 | 0.197 | 0.000 | 0.199 | 0.164 | 0.000 | 0.166 | 0.166 | 0.142 | 0.165 | 0.166 | |
W-4 | 0.211 | 0.210 | 0.213 | 0.213 | 0.175 | 0.177 | 0.000 | 0.177 | 0.152 | 0.177 | 0.178 | |
W-5 | 0.000 | 0.000 | 0.189 | 0.200 | 0.165 | 0.166 | 0.166 | 0.000 | 0.143 | 0.000 | 0.167 | |
W-6 | 0.197 | 0.197 | 0.000 | 0.201 | 0.166 | 0.167 | 0.167 | 0.168 | 0.000 | 0.167 | 0.168 | |
W-7 | 0.193 | 0.000 | 0.196 | 0.000 | 0.164 | 0.165 | 0.166 | 0.166 | 0.142 | 0.000 | 0.166 | |
W-8 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.167 | 0.167 | 0.143 | 0.167 | 0.000 |
No. | Item | Feasibility of VR-Assisted Welding Teaching | Importance of Index | |||
---|---|---|---|---|---|---|
Weighted Score | Standard Deviation | Ranking | Weighted Score | Ranking | ||
W-1 | Map reading and drawing | 0.105 | 0.160 | 2 | 0.129 | 4 |
W-2 | Operation preparation | 0.079 | 0.121 | 6 | 0.107 | 6 |
W-3 | Test material processing and combination | 0.092 | 0.139 | 4 | 0.134 | 3 |
W-4 | Welding construction | 0.119 | 0.180 | 1 | 0.165 | 1 |
W-5 | Weld bead slag removal | 0.062 | 0.095 | 7 | 0.087 | 8 |
W-6 | Welding inspection | 0.093 | 0.141 | 3 | 0.157 | 2 |
W-7 | Industrial safety and health | 0.080 | 0.122 | 5 | 0.128 | 5 |
W-8 | Professional ethics of welding personnel | 0.027 | 0.042 | 8 | 0.093 | 7 |
V-1 | Immersion | 0.116 | 0.340 | 2 | N/A | |
V-2 | Interaction | 0.117 | 0.343 | 1 | ||
V-3 | Imagination | 0.109 | 0.318 | 3 |
Week No. | Course Outline | VR Integration |
---|---|---|
Weekly | Site arrangement, including turning off the power supply to the machines; maintaining and returning tools; cleaning up workbenches, waste materials, and the environment; using the equipment carefully; and respecting public property | *** |
Weeks 1–2 | 1. Briefly introduce AC welding machines, as well as the functions and comparison of AC welding machines 2. Briefly introduce the numbering principle of CNS mild steel electrodes and the application of mild steel electrodes 3. Introduce the selection of personal appliances and safety lens for welding operation 4. Explain the safety rules of welding operation and introduce relevant equipment in the welding field | VR-assisted welding safety simulation |
Weeks 3–4 | 1. Protective equipment and correct welding postures (including electrode chuck holding and electrode holding methods) 2. Welding machine operation, welding current adjustment, arc initiation method, and straight welding for flat welding 3. Arc welding damage and protective measures and electric shock hazard and prevention methods 4. Demonstration explanation and practice | VR-assisted welding skills and stability |
Weeks 5–8 | 1. Appropriate welding arc length 2. Angle between base material and electrode during welding 3. Key points of flat welding, horizontal welding, vertical welding, and overhead welding 4. Demonstration explanation and practice | VR-assisted welding skills and stability |
Week 9 | Midterm exam: 1. Review the finished products; teachers and students evaluate them together 2. Answer students’ questions and summarize the key teaching points of this course | VR-assisted simulated welding test |
Weeks 10–17 | 1. Types and causes of weld bead defects 2. Prevention and improvement of weld bead defects Operation practice (teacher provides individual guidance and corrects students’ welding postures): 1. Strengthen the practice of welding actions, as demonstrated by the teacher 2. Complete the works on the work list | VR-assisted welding remedial teaching |
Week 18 | Midterm exam: 1. Review the finished products; teachers and students evaluate them together 2. Answer students’ questions and summarize the key teaching points of this course | VR-assisted simulated welding test |
No. | Dimension | Mean Value | Standard Deviation | t | Ranking |
---|---|---|---|---|---|
W-1 | Map reading and drawing | 3.87 | 0.75 | 7.16 *** | 8 |
W-2 | Operation preparation | 3.99 | 0.80 | 7.64 *** | 3 |
W-3 | Test material processing and combination | 3.90 | 0.84 | 6.62 *** | 7 |
W-4 | Welding construction | 3.95 | 0.77 | 7.61 *** | 4 |
W-5 | Weld bead slag removal | 3.91 | 0.73 | 7.63 *** | 5 |
W-6 | Welding inspection | 3.91 | 0.80 | 7.01 *** | 5 |
W-7 | Industrial safety and health | 4.05 | 0.78 | 8.27 *** | 2 |
W-8 | Professional ethics of welding personnel | 4.18 | 0.75 | 9.63 *** | 1 |
Dimension | Mean Value | Standard Deviation | t |
---|---|---|---|
VR Experience Feeling | 4.42 | 0.51 | 13.89 *** |
VR Equipment Use Interface and Operation Experience | 4.23 | 0.58 | 10.63 *** |
VR Equipment Advantages | 4.41 | 0.46 | 15.26 *** |
VR Equipment Use Satisfaction | 4.45 | 0.57 | 12.66 *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, C.-c.; Tung, C.-C.; Lou, S.-J. Research on Optimization of VR Welding Course Development with ANP and Satisfaction Evaluation. Electronics 2020, 9, 1673. https://doi.org/10.3390/electronics9101673
Chung C-c, Tung C-C, Lou S-J. Research on Optimization of VR Welding Course Development with ANP and Satisfaction Evaluation. Electronics. 2020; 9(10):1673. https://doi.org/10.3390/electronics9101673
Chicago/Turabian StyleChung, Chih-chao, Chun-Chun Tung, and Shi-Jer Lou. 2020. "Research on Optimization of VR Welding Course Development with ANP and Satisfaction Evaluation" Electronics 9, no. 10: 1673. https://doi.org/10.3390/electronics9101673
APA StyleChung, C.-c., Tung, C.-C., & Lou, S.-J. (2020). Research on Optimization of VR Welding Course Development with ANP and Satisfaction Evaluation. Electronics, 9(10), 1673. https://doi.org/10.3390/electronics9101673