Electromagnetic Micro-Structure Non-Destructive Testing: Sparsity-Constrained and Combined Convolutional Recurrent Neural Network Methods
Abstract
:1. Introduction
2. Modeling of the Problem
2.1. The Micro-Structure under Investigation
2.2. Method of Moments
2.3. Multiple Scattering Expansion Method
2.4. Comparison of the Two Modeling Methods
3. The Sparsity-Constrained Inversion
3.1. A Sketch of the Method of Operation
3.2. Results of the Sparsity-Constrained Method
4. CRNN Learning Method Based on Combining CNN and RNN
4.1. Main Principles
4.2. CRNN Probing of The Micro-Structure
4.3. Results of CRNN
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Sketch of the Adam Optimization Algorithm, and Suppress All Else
Algorithm A1: Sketch of the Adam Optimization Algorithm. |
|
References
- Ammari, H.; Zhang, H. A mathematical theory of super-resolution by using a system of sub-wavelength Helmholtz resonators. Commun. Math. Phys. 2015, 337, 379–428. [Google Scholar] [CrossRef] [Green Version]
- Maystre, D. Electromagnetic scattering by a set of objects: An integral method based on scattering operator. Prog. Electromagn. Res. 2006, 57, 55–84. [Google Scholar] [CrossRef] [Green Version]
- Tu, H.; Serhir, M.; Ran, P.; Lesselier, D. On the modeling and diagnosis of a micro-structured wire antenna system. In Proceedings of the 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Chengdu, China, 7–11 May 2018; p. 8563875. [Google Scholar] [CrossRef]
- Liu, Z.; Lesselier, D.; Zhong, Y. Electromagnetic imaging of damages in fibered layered laminates via equivalence theory. IEEE Trans. Comput. Imaging 2018, 4, 219–227. [Google Scholar] [CrossRef]
- Liu, Z.; Li, C.; Zhong, Y.; Lesselier, D. Electromagnetic modeling of damaged fiber-reinforced laminates. J. Comput. Phys. 2020, 409, 109318. [Google Scholar] [CrossRef]
- Brancaccio, A.; Solimene, R. Fault detection in dielectric grid scatterers. Opt. Express 2015, 23, 8200–8215. [Google Scholar] [CrossRef] [PubMed]
- Groby, J.P.; Lesselier, D. Localization and characterization of simple defects in finite-sized photonic crystals. J. Opt. Soc. Am. A 2008, 25, 146–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groby, J.P.; Wirgin, A.; De Ryck, L.; Lauriks, W.; Gilbert, R.; Xu, Y. Acoustic response of a rigid-frame porous medium plate with a periodic set of inclusions. J. Acoust. Soc. Am. 2009, 126, 685–693. [Google Scholar] [CrossRef]
- Ran, P.; Liu, Z.; Lesselier, D.; Serhir, M. Diagnostic within a dielectric micro-structure: Time-reversal and sparsity-constrained imaging. In Proceedings of the 13th European Conference on Antennas and Propagation (EUCAP), Krakow, Poland, 31 March–5 April 2019; p. 8740223. [Google Scholar]
- Lucas, A.; Iliadis, M.; Molina, R.; Katsaggelos, A.K. Using deep neural networks for inverse problems in imaging: Beyond analytical methods. IEEE Signal Process. Mag. 2018, 35, 20–36. [Google Scholar] [CrossRef]
- Massa, A.; Marcantonio, D.; Chen, X.; Li, M.; Salucci, M. DNNs as applied to electromagnetics, antennas, and propagation—A review. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2225–2229. [Google Scholar] [CrossRef]
- Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078v3. [Google Scholar]
- Mikolov, T.; Kombrink, S.; Burget, L.; Černocký, J.; Khudanpur, S. Extensions of recurrent neural network language model. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 5528–5531. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, X. Deep-learning schemes for full-wave nonlinear inverse scattering problems. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 1849–1860. [Google Scholar] [CrossRef]
- Cui, L.; Zhang, Y.; Zhang, R.; Liu, Q.H. A modified efficient KNN method for antenna optimization and design. IEEE Trans. Antennas Propag. 2020, 68, 6856–6866. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, Q.; Zhang, X.; Cui, L.; Wu, Z.; Chen, K.; Wang, D.; Liu, Q.H. Imaging hydraulic fractures under energized steel casing by convolutional neural networks. IEEE Trans. Geosci. Remote. Sens. 2020, 1–9. [Google Scholar] [CrossRef]
- Qin, C.; Schlemper, J.; Caballero, J.; Price, A.N.; Hajnal, J.V.; Rueckert, D. Convolutional recurrent neural networks for dynamic MR image reconstruction. IEEE Trans. Med Imaging 2019, 38, 280–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, T.W.; Williamson, I.A.D.; Minkov, M.; Fan, S. Wave physics as an analog recurrent neural network. arXiv 2019, arXiv:1904.12831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran, P.; Qin, Y.; Lesselier, D. Electromagnetic imaging of a dielectric micro-structure via convolutional neural networks. In Proceedings of the 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019; p. 8903073. [Google Scholar] [CrossRef]
- Ran, P.; Qin, Y.; Lesselier, D.; Serhir, M. Subwavelength micro-structure probing by binary-specialized methods: Contrast source and convolutional neural networks. IEEE Trans. Antennas Propag. 2020, 1. [Google Scholar] [CrossRef]
- Jones, D.S. Field computation by moment methods. Comput. J. 1969, 12, 37. [Google Scholar] [CrossRef]
- Botten, L.C.; Nicorovici, N.A.P.; Asatryan, A.A.; McPhedran, R.C.; de Sterke, C.M.; Robinson, P.A. Formulation for electromagnetic scattering and propagation through grating stacks of metallic and dielectric cylinders for photonic crystal calculations. Part I. Method. J. Opt. Soc. Am. A 2000, 17, 2165–2176. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 2011, 12, 2121–2159. [Google Scholar]
- Tieleman, T.; Hinton, G. Lecture 6.5-Rmsprop, Coursera: Neural Networks for Machine Learning; Technical Report; University of Toronto: Toronto, ON, Canada, 2012. [Google Scholar]
- Wang, F.; Liu, Q.H. A Bernoulli–Gaussian binary inversion method for high-frequency electromagnetic imaging of metallic reflectors. IEEE Trans. Antennas Propag. 2020, 68, 3184–3193. [Google Scholar] [CrossRef]
- Sanghvi, Y.; Kalepu, Y.; Khankhoje, U.K. Embedding deep learning in inverse scattering problems. IEEE Trans. Comput. Imaging 2020, 6, 46–56. [Google Scholar] [CrossRef]
- Wei, Z.; Chen, X. Physics-inspired convolutional neural network for solving full-wave inverse scattering problems. IEEE Trans. Antennas Propag. 2019, 67, 6138–6148. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, P.; Lesselier, D.; Serhir, M. Electromagnetic Micro-Structure Non-Destructive Testing: Sparsity-Constrained and Combined Convolutional Recurrent Neural Network Methods. Electronics 2020, 9, 1750. https://doi.org/10.3390/electronics9111750
Ran P, Lesselier D, Serhir M. Electromagnetic Micro-Structure Non-Destructive Testing: Sparsity-Constrained and Combined Convolutional Recurrent Neural Network Methods. Electronics. 2020; 9(11):1750. https://doi.org/10.3390/electronics9111750
Chicago/Turabian StyleRan, Peipei, Dominique Lesselier, and Mohammed Serhir. 2020. "Electromagnetic Micro-Structure Non-Destructive Testing: Sparsity-Constrained and Combined Convolutional Recurrent Neural Network Methods" Electronics 9, no. 11: 1750. https://doi.org/10.3390/electronics9111750
APA StyleRan, P., Lesselier, D., & Serhir, M. (2020). Electromagnetic Micro-Structure Non-Destructive Testing: Sparsity-Constrained and Combined Convolutional Recurrent Neural Network Methods. Electronics, 9(11), 1750. https://doi.org/10.3390/electronics9111750