Radio over Fiber: An Alternative Broadband Network Technology for IoT
Abstract
:1. Introduction
2. Technological Approach
3. Wireless Broadband Integration
4. RAU Operation Scheme
5. RAU Architectures
5.1. Baseband over Fiber
5.2. Radio Frequency over Fiber
5.3. Intermediate Frequency over Fiber
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Aslam, F.; Aimin, W.; Li, M.; Ur Rehman, K. Innovation in the Era of IoT and Industry 5.0: Absolute Innovation Management (AIM) Framework. Information 2020, 11, 124. [Google Scholar] [CrossRef] [Green Version]
- Beck, D. Wireless Solutions for Virtually Every IoT Design. Electron. Des. 2016. Available online: https://www.electronicdesign.com/technologies/iot/article/21801989/wireless-solutions-for-virtually-every-iot-design (accessed on 14 October 2020).
- De Almeida, I.B.F.; Mendes, L.L.; Rodrigues, J.J.P.C.; Da Cruz, M.A.A. 5G Waveforms for IoT Applications. IEEE Commun. Surv. Tutor. 2019, 21, 2554–2567. [Google Scholar] [CrossRef]
- Varga, P.; Attila, D.; Balla, D.; Haja, D.; Janky, F.; Soos, G.; Ficzere, D.; Maliosz, M.; Toka, L. 5G Support for Industrial IoT Applications–Challenges, Solutions, and Research Gaps. Sensors 2020, 20, 828. [Google Scholar] [CrossRef] [Green Version]
- Nordrum, A.; Clark, K.; IEEE Spectrum Staff. Everything You Need to Know about 5G. IEEE Spectr. 2007. Available online: https://spectrum.ieee.org/video/telecom/wireless/everything-you-need-to-know-about-5g (accessed on 14 October 2020).
- Liu, X.; Zhang, X. NOMA-based Resource Allocation for Cluster–based Cognitive Industrial Internet of Things. IEEE Trans. Ind. Inform. 2019, 16, 5379–5388. [Google Scholar] [CrossRef]
- Roh, W.; Seol, J.Y.; Park, J.; Lee, B.; Kim, Y.; Cho, J.; Cheun, K. Millimeter–Wave Beamforming as an Enabling Technology for 5G Cellular Communications: Theoretical Feasibility and Prototype Results. IEEE Commun. Mag. 2014, 52, 106–113. [Google Scholar] [CrossRef]
- Parekh, J.; VP Product; Mojo Networks. WiFi’s evolving role in IoT. Netw. World Mag. 2017. Available online: https://www.networkworld.com/article/3196191/wifi-s-evolving-role-in-iot.html (accessed on 14 October 2020).
- Lopez, D.; Garcia, A.; Galati, L.; Kasslin, M.; Doppler, K. IEEE 802.11be Extremely High Throughput: The Next Generation of Wi-Fi Technology Beyond 802.11ax. IEEE Commun. Mag. 2019, 57, 113–119. [Google Scholar] [CrossRef] [Green Version]
- International Technology Roadmap for Semiconductors 2.0. June 2015. Available online: https://www.semiconductors.org/wp-content/uploads/2018/06/0_2015-ITRS-2.0-Executive-Report-1.pdf (accessed on 14 October 2020).
- Gomes, N.J.; Nkansah, A.; Wake, D. Radio-Over-MMF Techniques— Part I: RF to Microwave Frequency Systems. J. Light. Technol. 2008, 26, 2388–2395. [Google Scholar] [CrossRef] [Green Version]
- Koonen, A.M.J.; García, M. Radio-Over-MMF Techniques—Part II: Microwave to Millimeter-Wave Systems. J. Light. Technol. 2008, 26, 2396–2408. [Google Scholar] [CrossRef] [Green Version]
- Lim, C.; Nirmalathas, A.; Bakaul, M.; Gamage, P.; Lee, K.; Yang, Y.; Novak, D.; Waterhouse, R. Fiber-Wireless Networks and Subsystem Technologies. J. Light. Technol. 2009, 28, 390–405. [Google Scholar] [CrossRef]
- Vyas, A.K.; Agrawal, N. Radio over Fiber: Future Technology of Communication. Int. J. Emerg. Trends Technol. Comput. Sci. 2012, 1, 233–237. [Google Scholar]
- Lim, C.; Ranaweera, C.; Nirmalathas, T.A.; Wong, E.; Lee, K. Evolution of Radio-Over-Fiber Technology. J. Light. Technol. 2019, 37, 1647–1656. [Google Scholar] [CrossRef]
- Lethien, C.; Loyez, C. Potentials of Radio over Multimode Fiber Systems for the In-Buildings Coverage of Mobile and Wireless LAN Applications. IEEE Photon. Technol. Lett. 2005, 17, 2793–2795. [Google Scholar] [CrossRef]
- Yoon, Y.; Kang, H.; Lee, M.; Park, K.; Choi, W. CMOS Integrated Optical Receivers for Radio-over-Fiber Transmission of IEEE 802.11g WLAN Signals. In Proceedings of the Asia-Pacific Microwave Photonics Conference, Beijing, China, 22–24 April 2009. [Google Scholar]
- Kang, H.; Lee, M.; Park, K.; Choi, W. Low-Cost Multistandard Radio-Over-Fiber Downlinks Based on CMOS-Compatible Si Avalanche Photodetectors. IEEE Photon. Technol. Lett. 2009, 21, 462–464. [Google Scholar] [CrossRef]
- Ko, M.; Lee, M.; Rüker, H.; Choi, W. Silicon photonics-wireless interface ICs for micro-/millimeter-wave fiber-wireless networks. Opt. Express 2013, 21, 22962–22973. [Google Scholar] [CrossRef] [Green Version]
- Deshours, F.; Alquié, G.; Abib, G.I.; Grard, E.; Rodrigues, V.; Leclerc, E. Optical Transimpedance Receiver for High Data Transmission in OFDM Modulation Format. J. Light. Technol. 2015, 33, 2004–2011. [Google Scholar] [CrossRef] [Green Version]
- Ko, M.; Youn, J.; Lee, M.; Choi, W.; Rüker, H.; Choi, W. Silicon Photonics-Wireless Interface IC for 60-GHz Wireless Link. IEEE Photon. Technol. Lett. 2012, 24, 1112–1114. [Google Scholar] [CrossRef] [Green Version]
- Pu, T.; Fang, T.; Zheng, J.; Huang, L. Dispersion Compensation Methods for Radio Over Fiber System. In Proceedings of the 14th International Conference on Optical Communications and Networks (ICOCN), Nanjing, China, 3–5 July 2015. [Google Scholar]
- Miyauchi, M.; Kimura, K.; Tsutsumi, Y.; Maeda, J. Compensation of modulation distortion in microwave radio-over-fiber systems using chromatic dispersion. In Proceedings of the 2015 International Topical Meeting on Microwave Photonics (MWP), Paphos, Cyprus, 26–29 October 2015. [Google Scholar]
- Qi, J.; Liu, J.; Zhang, X.; Xie, L. Fiber Dispersion and Nonlinearity Influences on Transmissions of AM and FM Data Modulation Signals in Radio-Over-Fiber System. IEEE J. Quantum Electron. 2010, 46, 1170–1177. [Google Scholar] [CrossRef]
- Maeda, J.; Katoh, T.; Ebisawa, S. Effect of Fiber Dispersion on Subcarrier QAM Signal in Radio-Over-Fiber Transmission. J. Light. Technol. 2012, 30, 2625–2632. [Google Scholar] [CrossRef]
- Tong, Y.; Chow, C.; Chen, G.; Peng, C.; Yeh, C.; Tsang, H. Integrated Silicon Photonics Remote Radio Frontend (RRF) for Single-Sideband (SSB) Millimeter-Wave Radio-Over-Fiber (ROF) Systems. IEEE Photon. J. 2019, 11, 1–8. [Google Scholar] [CrossRef]
- Sung, M.; Cho, S.; Lee, J.; Chung, H. Demonstration of IFoF-Based Mobile Fronthaul in 5G Prototype with 28-GHz Millimeter wave. J. Light. Technol. 2018, 36, 601–609. [Google Scholar] [CrossRef]
- Ahmad, W.; Abdulaziz, M.; Nejdel, A.; Törmänem, M.; Sjöland, S. CMOS Integrated Remote Antenna Unit for Fiber-Fed Distributed MIMO Systems. IEEE Trans. Microw. Theory Tech. 2017, 65, 173–186. [Google Scholar] [CrossRef]
- Royo, G.; Martínez, A.; Sánchez, C.; Aldea, C.; Celma, S. A Highly Linear Low-Noise Transimpedance Amplifier for Indoor Fiber-Wireless Remote Antenna Units. Electronics 2019, 8, 437. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Guo, H.; Nishiyama, H.; Ujikawa, H.; Suzuki, K.; Kato, N. New Perspectives on Future Smart FiWi Networks: Scalability, Reliability, and Energy Efficiency. IEEE Commun. Surv. Tutor. 2015, 18, 1045–1072. [Google Scholar] [CrossRef]
- Breyne, N.; Torfs, G.; Yin, X.; Demeester, P.; Bauwelinck, J. Comparison Between Analog Radio-Over-Fiber and Sigma Delta Modulated Radio-Over-Fiber. IEEE Photon. Technol. Lett. 2017, 29, 1808–1811. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Kao, H.; Ishimura, S.; Nishimura, K.; Kawanishi, T.; Suzuki, M. Cascaded IF-Over-Fiber Links with Hybrid Signal Processing for Analog Mobile Fronthaul. J. Light. Technol. 2020, 38, 5656–5667. [Google Scholar] [CrossRef]
RoF Type | RF/IF (GHz) | Fiber | Signal Type | Light Source | Photo Detector | Technology | Link | Application | Ref. Year |
---|---|---|---|---|---|---|---|---|---|
RFoF | 5/- | MMF | 64-QAM 54 Mbps | 850-nm | APD | 0.180-m CMOS | Downlink | Indoor RAU | [19] 2013 |
RFoF | 60/- | MMF | BPSK 1.6 Gbps | 850-nm | APD | 0.25-m SiGe BiCMOS | Downlink | Indoor RAU | [21] 2012 |
RFoF | 40/- | SMF | SSB 7.8 Gbps | N/A | N/A | SiPh-SOI | Downlink | RRF | [26] 2019 |
IFoF | 28/1.7–2.7 | SMF | 64-QAM 1.5 Gbps | 1550-nm 1310-nm | N/A | Commercial ICs | Fronthaul | Outdoor RAU | [27] 2018 |
IFoF | 2.1/0.04 | MMF | 16-QAM N/A | VCSEL | APD | 65-nm CMOS | Fronthaul | Indoor RAU | [28] 2017 |
IFoF | 5/0.1–0.3 | MMF | 64-QAM 54 Mbps | 1550-nm | PIN | 65-nm CMOS | Downlink | Indoor RAU | [29] 2019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes-Páliz, D.F.; Royo, G.; Aznar, F.; Aldea, C.; Celma, S. Radio over Fiber: An Alternative Broadband Network Technology for IoT. Electronics 2020, 9, 1785. https://doi.org/10.3390/electronics9111785
Paredes-Páliz DF, Royo G, Aznar F, Aldea C, Celma S. Radio over Fiber: An Alternative Broadband Network Technology for IoT. Electronics. 2020; 9(11):1785. https://doi.org/10.3390/electronics9111785
Chicago/Turabian StyleParedes-Páliz, Diego F., Guillermo Royo, Francisco Aznar, Concepción Aldea, and Santiago Celma. 2020. "Radio over Fiber: An Alternative Broadband Network Technology for IoT" Electronics 9, no. 11: 1785. https://doi.org/10.3390/electronics9111785
APA StyleParedes-Páliz, D. F., Royo, G., Aznar, F., Aldea, C., & Celma, S. (2020). Radio over Fiber: An Alternative Broadband Network Technology for IoT. Electronics, 9(11), 1785. https://doi.org/10.3390/electronics9111785