A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors
Abstract
:1. Introduction
1.1. General Context
1.2. Literature Review
1.3. Motivation
1.4. Contributions and Scope
- √
- Identify and select solution methods proposed in the literature based on sequential programming, thereby eliminating the need for specialized software, such as Digsilent, Matpower, and ETAP. This reduces the cost and complexity of solving the DC PF.
- √
- Presentation of each power flow approach in a tutorial manner. This allows studying DC networks from beginners (engineering students) to experts (power-system researchers) regarding numerical methods and algorithms.
- √
- Identify through simulation results the solution methods with the best PF performance in DC grids with radial and mesh structures, which are essential in terms of numerical convergence and computational efforts for planning and management strategies of DC grids.
1.5. Paper Organization
2. DC Power-Flow Mathematical Formulation
3. Solution Methods
3.1. Power-Flow Solution Methods for DC Networks with Radial or Mesh Structures
3.1.1. Taylor-Series-Based Approximation (TBM)
3.1.2. Successive Approximation (SA)
Algorithm 1: Iterative power-flow method for direct-current (DC) resistive networks with radial or mesh structures. |
|
3.2. Power-Flow Solution Methods for DC Grids with Radial Structure
- √
- A DC grid contains a radial structure if it has n buses and b branches, and . This guarantees a unique route between each pair of buses, as shown in Figure 1.
- √
- In radial grids, a unique ideal generator with voltage control capability is assumed. This enables global power balance and voltage control on the DC grid.
3.2.1. Power-Flow Method Based on Triangular Matrix (TM) Formulation
- If branch k is located upstream bus l, the component takes a value of 1.
- If branch k is located downstream bus l, the component takes a value of 0.
Algorithm 2: Proposed iterative power-flow method for DC resistive networks based on triangular matrix (TM) formulation. |
|
3.2.2. Sweep Method Based on Graph Theory (SMBGT)
- if branch k is connected to the bus l and the current leaves bus l.
- if branch k is connected to bus l and the current is arriving to bus l.
- if branch k is not connected to bus l.
Algorithm 3: Iterative procedure for power-flow analysis in radial DC networks through the Sweep Method Based on Graph Theory (SMBGT). |
|
3.2.3. Backward/Forward Sweep Method (BF)
Algorithm 4: Backward/forward power-flow method. |
|
4. Computational Analysis
4.1. Test Systems
4.2. 10-bus Test System
4.3. 21-Bus Test System
4.4. 33-Bus Test System
4.5. 69-Bus Test System
5. Simulation Results
5.1. Simulation Results for DC MGs with Mesh Structure
5.2. Simulation Results for DC MGs with Radial Structure
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Montoya, O.D. On Linear Analysis of the Power Flow Equations for DC and AC Grids with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2019. [Google Scholar] [CrossRef]
- Rouzbehi, K.; Heidary Yazdi, S.S.; Shariati Moghadam, N. Power Flow Control in Multi-Terminal HVDC Grids Using a Serial-Parallel DC Power Flow Controller. IEEE Access 2018, 6, 56934–56944. [Google Scholar] [CrossRef]
- Gil-González, W.; Montoya, O.D.; Grisales-Noreña, L.F.; Cruz-Peragón, F.; Alcalá, G. Economic Dispatch of Renewable Generators and BESS in DC Microgrids Using Second-Order Cone Optimization. Energies 2020, 13, 1703. [Google Scholar] [CrossRef] [Green Version]
- Molzahn, D.K. Identifying and Characterizing Non-Convexities in Feasible Spaces of Optimal Power Flow Problems. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 672–676. [Google Scholar] [CrossRef]
- Li, H.; Zhang, L.; Shen, X. A loop-analysis theory based power flow method and its linear formulation for low-voltage DC grid. Electr. Power Syst. Res. 2020, 187, 106473. [Google Scholar] [CrossRef]
- Simpson-Porco, J.W.; Dörfler, F.; Bullo, F. On Resistive Networks of Constant-Power Devices. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 811–815. [Google Scholar] [CrossRef] [Green Version]
- Montoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W.; Alcalá, G.; Hernandez-Escobedo, Q. Optimal Location and Sizing of PV Sources in DC Networks for Minimizing Greenhouse Emissions in Diesel Generators. Symmetry 2020, 12, 322. [Google Scholar] [CrossRef] [Green Version]
- Grainger, J.; Stevenson, W. Power System Analysis; Mcgraw-Hill Series in Electrical and Computer Engineering: Power and Energy; McGraw-Hill: New York, NY, USA, 1994. [Google Scholar]
- Krebs, V.; Schewe, L.; Schmidt, M. Uniqueness and multiplicity of market equilibria on DC power flow networks. Eur. J. Oper. Res. 2018, 271, 165–178. [Google Scholar] [CrossRef]
- Milano, F. Analogy and Convergence of Levenberg’s and Lyapunov-Based Methods for Power Flow Analysis. IEEE Trans. Power Syst. 2016, 31, 1663–1664. [Google Scholar] [CrossRef]
- Papadimitriou, C.; Zountouridou, E.; Hatziargyriou, N. Review of hierarchical control in DC microgrids. Electr. Power Syst. Res. 2015, 122, 159–167. [Google Scholar] [CrossRef]
- Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S. State of the Art in Research on Microgrids: A Review. IEEE Access 2015, 3, 890–925. [Google Scholar] [CrossRef]
- Barelli, L.; Bidini, G.; Pelosi, D.; Ciupageanu, D.; Cardelli, E.; Castellini, S.; Lăzăroiu, G. Comparative analysis of AC and DC bus configurations for flywheel-battery HESS integration in residential micro-grids. Energy 2020, 204, 117939. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W.; Rivas-Trujillo, E. Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids. Energies 2020, 13, 2289. [Google Scholar] [CrossRef]
- Siraj, K.; Khan, H.A. DC distribution for residential power networks A framework to analyze the impact of voltage levels on energy efficiency. Energy Rep. 2020, 6, 944–951. [Google Scholar] [CrossRef]
- Duan, J.; Li, Z.; Zhou, Y.; Wei, Z. Study on the voltage level sequence of future urban DC distribution network in China: A Review. Int. J. Electr. Power Energy Syst. 2020, 117, 105640. [Google Scholar] [CrossRef]
- Lotfi, H.; Khodaei, A. AC Versus DC Microgrid Planning. IEEE Trans. Smart Grid 2017, 8, 296–304. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Garzon-Rivera, O.D.; Ramírez-Vanegas, C.A.; Montoya, O.D.; Ramos-Paja, C.A. Application of the backward/forward sweep method for solving the power flow problem in DC networks with radial structure. J. Phys. Conf. Ser. 2020, 1448, 012012. [Google Scholar] [CrossRef]
- Gonzalez-longatt, F.; Roldan, J.; Charalambous, C. Solution of ac/dc power flow on a multiterminal HVDC system: Illustrative case supergrid phase I. In Proceedings of the 2012 47th Universities Power Engineering Conference (UPEC), London, UK, 4–7 September 2012. [Google Scholar]
- Beerten, J.; Cole, S.; Belmans, R. Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms. IEEE Trans. Power Syst. 2012, 27, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Hartani, M.; Hamouda, M.; Abdelkhalek, O.; Benabdelkader, A.; Meftouhi, A. Static-Dynamic Analysis of an LVDC Smart Microgrid for a Saharian-Isolated Areas Using ETAP/MATLAB Software. In Smart Energy Empowerment in Smart and Resilient Cities; Springer: Berlin/Heidelberg, Germany, 2019; pp. 496–505. [Google Scholar]
- Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149–153. [Google Scholar] [CrossRef]
- Garcés, A. On the Convergence of Newton’s Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777. [Google Scholar] [CrossRef] [Green Version]
- Garces, A.; Montoya, D.; Torres, R. Optimal power flow in multiterminal HVDC systems considering DC/DC converters. In Proceedings of the 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), Santa Clara, CA, USA, 8–10 June 2016; pp. 1212–1217. [Google Scholar] [CrossRef]
- Li, J.; Liu, F.; Wang, Z.; Low, S.H.; Mei, S. Optimal Power Flow in Stand-Alone DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5496–5506. [Google Scholar] [CrossRef] [Green Version]
- Montoya, O.D. Numerical Approximation of the Maximum Power Consumption in DC-MGs With CPLs via an SDP Model. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 642–646. [Google Scholar] [CrossRef]
- Capitanescu, F. Critical review of recent advances and further developments needed in AC optimal power flow. Electr. Power Syst. Res. 2016, 136, 57–68. [Google Scholar] [CrossRef]
- Marini, A.; Mortazavi, S.; Piegari, L.; Ghazizadeh, M.S. An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations. Electr. Power Syst. Res. 2019, 170, 229–243. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.F.; González-Montoya, D.; Ramos-Paja, C.; Garces, A. Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 2018, 163, 375–381. [Google Scholar] [CrossRef]
- Montoya, O.D.; Garrido, V.M.; Gil-González, W.; Grisales-Noreña, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 1865–1869. [Google Scholar] [CrossRef]
- Montoya, O.D.; Grisales-Noreña, L.F.; Gil-González, W. Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids with CPLs. IEEE Trans. Circuits Syst. II Express Briefs 2019. [Google Scholar] [CrossRef]
- Montoya, O.D. On the Existence of the Power Flow Solution in DC Grids with CPLs Through a Graph-Based Method. IEEE Trans. Circuits Syst. II Express Briefs 2019. [Google Scholar] [CrossRef]
- Garcés, A.; Herrera, J.; Gil-González, W.; Montoya, O. Small-Signal Stability in Low-Voltage DC-Grids. In Proceedings of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Montoya, O.D.; Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electr. Power Syst. Res. 2020, 187, 106454. [Google Scholar] [CrossRef]
- Machado, J.E.; Griñó, R.; Barabanov, N.; Ortega, R.; Polyak, B. On Existence of Equilibria of Multi-Port Linear AC Networks With Constant-Power Loads. IEEE Trans. Circuits Syst. I Regul. Pap. 2017, 64, 2772–2782. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, S.; Ortega, R.; Griño, R.; Bergna, G.; Molinas, M. Conditions for Existence of Equilibria of Systems With Constant Power Loads. IEEE Trans. Circuits Syst. I Regul. Pap. 2014, 61, 2204–2211. [Google Scholar] [CrossRef]
- Benedito, E.; del Puerto-Flores, D.; Dòria-Cerezo, A.; Scherpen, J.M. Port-Hamiltonian based Optimal Power Flow algorithm for multi-terminal DC networks. Control Eng. Pract. 2019, 83, 141–150. [Google Scholar] [CrossRef]
- Lagace, P.J.; Vuong, M.H.; Kamwa, I. Improving power flow convergence by Newton Raphson with a Levenberg-Marquardt method. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–6. [Google Scholar]
- Montoya, O.D.; Gil-González, W.; Garces, A. Optimal Power Flow on DC Microgrids: A Quadratic Convex Approximation. IEEE Trans. Circuits Syst. II Express Briefs 2018. [Google Scholar] [CrossRef]
- Garces, A. A Linear Three-Phase Load Flow for Power Distribution Systems. IEEE Trans. Power Syst. 2016, 31, 827–828. [Google Scholar] [CrossRef]
- Montoya, O.D.; Escobar, A.F.; Garrido, V.M. Power flow solution in direct current grids using the linear conjugate gradient approach. J. Phys. Conf. Ser. 2020, 1448, 012016. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Barnes, M. Power Flow Algorithms for Multi-Terminal VSC-HVDC With Droop Control. IEEE Trans. Power Syst. 2014, 29, 1721–1730. [Google Scholar] [CrossRef]
- Huang, G.; Ongsakul, W. Managing the bottlenecks in parallel Gauss-Seidel type algorithms for power flow analysis. IEEE Trans. Power Syst. 1994, 9, 677–684. [Google Scholar] [CrossRef]
- Zhang, H.; Vittal, V.; Heydt, G.T.; Quintero, J. A relaxed AC optimal power flow model based on a Taylor series. In Proceedings of the 2013 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Bangalore, India, 10–13 November 2013; pp. 1–5. [Google Scholar] [CrossRef]
- Jesus, P.D.O.D.; Alvarez, M.; Yusta, J. Distribution power flow method based on a real quasi-symmetric matrix. Electr. Power Syst. Res. 2013, 95, 148–159. [Google Scholar] [CrossRef]
- Moradi, M.; Abedini, M. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. Int. J. Electr. Power Energy Syst. 2012, 34, 66–74. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Montoya, O.D.; Grajales, A.; Hincapie, R.A.; Granada, M. Optimal Planning and Operation of Distribution Systems Considering Distributed Energy Resources and Automatic Reclosers. IEEE Lat. Am. Trans. 2018, 16, 126–134. [Google Scholar] [CrossRef]
- Grisales-Noreña, L.F.; Gonzalez Montoya, D.; Ramos-Paja, C.A. Optimal Sizing and Location of Distributed Generators Based on PBIL and PSO Techniques. Energies 2018, 11, 1018. [Google Scholar] [CrossRef] [Green Version]
- Baran, M.E.; Wu, F.F. Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Trans. Power Deliv. 1989, 4, 1401–1407. [Google Scholar] [CrossRef]
- Baran, M.E.; Wu, F.F. Optimal capacitor placement on radial distribution systems. IEEE Trans. Power Deliv. 1989, 4, 725–734. [Google Scholar] [CrossRef]
From | To | R (p.u) | From | To | R (p.u) |
---|---|---|---|---|---|
5 | 10 | 0.0035 | 8 | 10 | 0.0025 |
From | To | R (p.u) | From | To | R (p.u) |
---|---|---|---|---|---|
35 | 52 | 0.0022 | 27 | 69 | 0.0025 |
50 | 53 | 0.0057 | 46 | 60 | 0.0275 |
Method | Voltage Error (p.u) | Error (p.u) | Time (s) |
---|---|---|---|
10-Bus Mesh Test System | |||
NR | - | - | |
GJ | |||
GS | |||
TBM | |||
SA | |||
69-Bus Mesh Test System | |||
NR | - | - | |
GJ | 6.15 | ||
GS | 3.38 | ||
TBM | |||
SA |
Method | Voltage Error (p.u) | Error (p.u) | Time (s) | Method | Voltage Error (p.u) | Error (p.u) | Time (s) |
---|---|---|---|---|---|---|---|
10-Bus Test System | 21-Bus Test System | ||||||
NR | - | - | NR | - | - | ||
GJ | GJ | ||||||
GS | GS | ||||||
TBM | TBM | ||||||
SA | SA | ||||||
TM | TM | ||||||
SMBGT | 9 | SMBGT | |||||
BF | BF | ||||||
33-Bus Test System | 69-Bus Test System | ||||||
NR | - | - | NR | - | - | ||
GJ | GJ | 4.83 | |||||
GS | GS | 3.99 | |||||
TBM | TBM | ||||||
SA | SA | ||||||
TM | TM | ||||||
SMBGT | SMBGT | ||||||
BF | BF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grisales-Noreña, L.F.; Montoya, O.D.; Gil-González, W.J.; Perea-Moreno, A.-J.; Perea-Moreno, M.-A. A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors. Electronics 2020, 9, 2062. https://doi.org/10.3390/electronics9122062
Grisales-Noreña LF, Montoya OD, Gil-González WJ, Perea-Moreno A-J, Perea-Moreno M-A. A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors. Electronics. 2020; 9(12):2062. https://doi.org/10.3390/electronics9122062
Chicago/Turabian StyleGrisales-Noreña, Luis Fernando, Oscar Danilo Montoya, Walter Julian Gil-González, Alberto-Jesus Perea-Moreno, and Miguel-Angel Perea-Moreno. 2020. "A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors" Electronics 9, no. 12: 2062. https://doi.org/10.3390/electronics9122062
APA StyleGrisales-Noreña, L. F., Montoya, O. D., Gil-González, W. J., Perea-Moreno, A.-J., & Perea-Moreno, M.-A. (2020). A Comparative Study on Power Flow Methods for Direct-Current Networks Considering Processing Time and Numerical Convergence Errors. Electronics, 9(12), 2062. https://doi.org/10.3390/electronics9122062