Delta-Sigma Modulator-Based Step-Up DC–DC Converter with Dynamic Output Voltage Scaling
Abstract
:1. Introduction
2. Proposed DSM-Based Boost Converter Architecture
3. Circuit Implementations
3.1. Duty Cycle Controller
3.2. Third-Order Single Op-Amp DSM
3.3. Type-III Controller
4. Measurement Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Horiba, T. Lithium-ion battery systems. Proc. IEEE 2014, 102, 939–950. [Google Scholar] [CrossRef]
- Cho, Y.-K.; Lee, K.C. Noninverting buck-boost DC-DC converter using a duobinary-encoded single-bit delta-sigma modulator. IEEE Trans. Power Electron. 2020, 35, 484–495. [Google Scholar] [CrossRef]
- Cho, Y.-K.; Park, B.H.; Kim, C.-Y. Wideband and multiband long-term evolution transmitter using envelope delta-sigma modulation technique. Analog Intergr. Circuits Signal Process. 2017, 91, 155–162. [Google Scholar] [CrossRef]
- Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step-up DC-DC converters: A comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [Google Scholar] [CrossRef]
- Huang, C.-H.; Wu, H.-H.; Wei, C.-L. Compensator-free mixed-ripple adaptive on-time controlled boost converter. IEEE J. Solid-State Circuits 2018, 53, 596–604. [Google Scholar] [CrossRef]
- Hwang, Y.-S.; Chen, J.-J.; Lai, B.-H.; Ku, Y.-T.; Yu, C.-C. A fast-response boost converter with noise-reduction techniques for wireless sensor networks. IEEE Sens. J. 2016, 16, 3188–3197. [Google Scholar] [CrossRef]
- Su, Y.-P.; Luo, Y.K.; Chen, Y.-C.; Chen, K.-H. Current-mode synthetic control technique for high-efficiency DC-DC boost converters over a wide load range. IEEE Trans. Very Large Scale Integr. Syst. 2014, 22, 1666–1678. [Google Scholar] [CrossRef]
- Jing, X.; Mik, P.K.T. A fast-frequency adaptive-on-time boost converter with light load efficiency enhancement and predictable noise spectrum. IEEE J. Solid-State Circuits 2013, 48, 2442–2456. [Google Scholar] [CrossRef]
- Duong, T.-D.; Nguyen, M.-K.; Tran, T.-T.; Lim, Y.-C.; Choi, J.-H. Transformerless high step-up dc-dc converters with switched-capacitor network. Electronics 2019, 8, 1420. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Gao, Y.; Yang, L. Research on application of non-isolated three-port switching boost converter in photovoltaic power generation system. Electronics 2019, 8, 746. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.-K.; Kim, M.-D.; Kim, C.-Y. A low switching-noise and high-efficiency buck converter using a continuous-time reconfigurable delta-sigma modulator. IEEE Trans. Power Electron. 2018, 33, 10501–10511. [Google Scholar] [CrossRef]
- Alghamdi, M.K.; Hamoui, A.A. A spurious-free switching buck converter achieving enhanced light-load efficiency by using a ΔΣ-modulator controller with a scalable sampling frequency. IEEE J. Solid-State Circuits 2012, 47, 841–851. [Google Scholar] [CrossRef]
- Liou, W.-R.; Yeh, M.-L.; Chen, P.-S.; Tseng, C.-C.; Huang, T.-Y.; Lin, S.-C.; Lin, C.-Y.; Sun, C.-H. Monolithic low-EMI CMOS DC-DC boost converter for portable applications. IEEE Trans. Very Large Scale Integr. Syst. 2014, 22, 420–424. [Google Scholar] [CrossRef]
- Khan, Q.; Rao, S.; Swank, D.; Rao, A.; McIntyre, W.; Bang, S.; Hanumolu, P.K. A 3.3V 500mA digital buck-boost converter with 92% peak efficiency using constant ON/OFF time delta-sigma fractional-N control. In Proceedings of the ESSCIRC, Helsinki, Finland, 12–16 September 2011; pp. 439–442. [Google Scholar]
- Sahu, B.; Rincon-Mora, G.A. A high-efficiency, dual-mode, dynamic, buck-boost power supply IC for portable applications. In Proceedings of the 18th International Conference on VLSI Design held jointly with 4th International Conference on Embedded Systems Design, Kolkata, India, 3–7 January 2005; pp. 858–861. [Google Scholar]
- Ericson, R.; Maksimovic, D. Fundamentals of Power Electronics, 2nd ed.; Kluwer: New York, NY, USA, 2001. [Google Scholar]
- Michal, V. Dynamic duty-cycle limitation of the boost DC/DC converter allowing maximal output power operations. In Proceedings of the International Conference on Applied Electronics, Pilsen, Czech Republic, 6–7 September 2016; pp. 177–182. [Google Scholar]
- Cho, Y.-K.; Kim, M.-D.; Kim, C.-Y. A low-power continuous-time delta-sigma modulator using resonant single op-amp third-order loop filter. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 854–858. [Google Scholar] [CrossRef]
- Cho, Y.-K.; Park, B.H. Single op-amp second-order loop filter for continuous-time delta-sigma modulators. Electron. Lett. 2015, 51, 619–621. [Google Scholar] [CrossRef]
ref. | VIN (V) | VOUT (V) | Controller | L (μH) | C (μF) | Load Current (mA) | Efficiency | Max Ripple VOUT (mV) | Output SFDR (dBc) | Size (mm2) | Process (nm) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | fS (MHz) | min | max | Peak η (%) | |||||||||
This work | 2.0–4.5 | 2.5–5.0 | DSM | 12 | 2.8 | 20 | 1 | 450 | 95.5 | 25 @500 mA | 91 | 0.76 | 180 |
[5] | 0.8–1.4 | 1.8 | MRAOT | 1 | 1 | 6.8 | 10 | 400 | 92.4 | 42.5 @400 mA | - | 0.88 | 180 |
[6] | 0.8–1.2 | 1.8 | DSM | 1–2 | 3.3 | 10 | 1 | 100 | 90 | 45 @100 mA | 70 | 0.85 | 180 |
[7] | 2.5–4.2 | 5 | Current-Mode Synthetic | 2–5 | 1 | 10 | 10 | 500 | 90 | 50 @400 mA | - | 1.90 | 300 |
[8] | 1.8–3.2 | 3.0–4.2 | Adaptive On Time | 1/2N N = 0–5 | 1 | 10 | 2 | 800 | 94.8 | 80 @800 mA | ~50 * | 2.25 | 350 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.-K.; Park, B.H.; Hyun, S.-B. Delta-Sigma Modulator-Based Step-Up DC–DC Converter with Dynamic Output Voltage Scaling. Electronics 2020, 9, 498. https://doi.org/10.3390/electronics9030498
Cho Y-K, Park BH, Hyun S-B. Delta-Sigma Modulator-Based Step-Up DC–DC Converter with Dynamic Output Voltage Scaling. Electronics. 2020; 9(3):498. https://doi.org/10.3390/electronics9030498
Chicago/Turabian StyleCho, Young-Kyun, Bong Hyuk Park, and Seok-Bong Hyun. 2020. "Delta-Sigma Modulator-Based Step-Up DC–DC Converter with Dynamic Output Voltage Scaling" Electronics 9, no. 3: 498. https://doi.org/10.3390/electronics9030498
APA StyleCho, Y.-K., Park, B. H., & Hyun, S.-B. (2020). Delta-Sigma Modulator-Based Step-Up DC–DC Converter with Dynamic Output Voltage Scaling. Electronics, 9(3), 498. https://doi.org/10.3390/electronics9030498