The Detection of Chemical Materials with a Metamaterial-Based Sensor Incorporating Oval Wing Resonators
Abstract
:1. Introduction
2. Design Structure of the Proposed Metamaterial-Based Sensor
3. Measurement of Branded and Unbranded Diesels
4. Simulation and Experimental Investigations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yan, H.; Wang, H.; Vladareanu, L.; Lin, M.; Vladareanu, V.; Li, Y. Detection of Participation and Training Task Difficulty Applied to the Multi-Sensor Systems of Rehabilitation Robots. Sensors 2019, 19, 4681. [Google Scholar] [CrossRef] [Green Version]
- Faragó, P.; Gălătuș, R.; Hintea, S.; Boșca, A.B.; Feurdean, C.N.; Ilea, A. An Intra-Oral Optical Sensor for the Real-Time Identification and Assessment of Wine Intake. Sensors 2019, 19, 4719. [Google Scholar] [CrossRef] [Green Version]
- Al-Naib, I. Biomedical sensing with conductively coupled terahertz metamaterial resonators. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 1–5. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Deng, L.; Karaaslan, M.; Unal, E. Determination of the liquid chemicals depending on the electrical characteristics by using metamaterial absorber based sensor. Chem. Phys. Lett. 2019, 732, 136655. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Deng, L.; Altıntaş, O.; Ünal, E.; Karaaslan, M. Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics. Phys. E Low-dimens. Syst. Nanostruct. 2019, 114, 113593. [Google Scholar] [CrossRef]
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental Verification of a Negative Index of Refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett. 2000, 84, 4184–4187. [Google Scholar] [CrossRef] [Green Version]
- Naqui, J.; Martı, F. Transmission Lines Loaded With Bisymmetric Resonators and Their Application to Angular Displacement and Velocity Sensors. IEEE Trans. Microw. Theory Tech. 2013, 61, 4700–4713. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Deng, L.; Karaaslan, M.; Altıntaş, O.; Awl, H.N.; Muhammadsharif, F.F.; Liao, C.; Unal, E.; Luo, H. Novel Metamaterials-Based Hypersensitized Liquid Sensor Integrating Omega-Shaped Resonator with Microstrip Transmission Line. Sensors 2020, 20, 943. [Google Scholar] [CrossRef] [Green Version]
- Zarifi, M.H.; Sohrabi, A.; Shaibani, P.M.; Daneshmand, M.; Thundat, T. Detection of Volatile Organic Compounds Using Microwave Sensors. IEEE Sens. J. 2014, 15, 248–254. [Google Scholar] [CrossRef]
- Staszek, K.; Piekarz, I.; Sorocki, J.; Koryciak, S.; Wincza, K.; Gruszczynski, S. Low-cost microwave vector system for liquid properties monitoring. IEEE Trans. Ind. Electron. 2017, 65, 1665–1674. [Google Scholar] [CrossRef]
- Boybay, M.S.; Ramahi, O.M. Material characterization using complementary split-ring resonators. IEEE Trans. Instrum. Meas. 2012, 61, 3039–3046. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.; Abbott, D. High-sensitivity metamaterial-inspired sensor for microfluidic dielectric characterization. IEEE Sens. J. 2014, 14, 1345–1351. [Google Scholar] [CrossRef] [Green Version]
- Saadeldin, A.S.; Hameed, M.F.O.; Elkaramany, E.M.; Obayya, S.S. Highly Sensitive Terahertz Metamaterial Sensor. IEEE Sens. J. 2019, 19, 7993–7999. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Scott, J.; Ghorbani, K. Ultrahigh-sensitivity microwave sensor for microfluidic complex permittivity measurement. IEEE Trans. Microw. Theory Tech. 2019, 67, 4269–4277. [Google Scholar] [CrossRef]
- Salim, A.; Lim, S. Review of recent metamaterials microfluidic sensor. Sensors 2018, 18, 232. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ruan, C.; Chen, K. High-sensitivity microwave sensor for liquid characterization using a complementary circular spiral resonator. Sensors 2019, 19, 787. [Google Scholar] [CrossRef] [Green Version]
- Sadeqi, A.; Nejad, H.R.; Sonkusale, S. Low-cost metamaterial-on-paper chemical sensor. Transducers Int. Conf. Solid-State Sens. Actuators Microsyst. 2017, 25, 1437–1440. [Google Scholar] [CrossRef]
- Withayachumnankul, W.; Abbott, D. Metamaterials in the terahertz regime. IEEE Photonics J. 2009, 1, 99–118. [Google Scholar] [CrossRef]
- Soffiatti, A.; Max, Y.; Silva, S.; M de Mendonça, L. Microwave Metamaterial-Based Sensor for Dielectric Characterization of Liquids. Sensors 2018, 18, 1513. [Google Scholar] [CrossRef] [Green Version]
- Zaid, J.; Abdulhadi, A.; Denidni, T. Miniaturized Multi-Port Microstrip Patch Antenna Using Metamaterial for Passive UHF RFID-Tag Sensor Applications. Sensors 2019, 19, 1982. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Enano, J.; Vélez, P.; Gil, M.; Mata-Contreras, J.; Grenier, K.; Dubuc, D.; Martin, F. Microstrip Lines Loaded with Metamaterial-Inspired Resonators for Microwave Sensors/Comparators with Optimized Sensitivity. In Proceedings of the 49th European Microwave Conference (EuMC), Paris, France, 1–3 October 2019; Volume 1, p. 19173789. [Google Scholar] [CrossRef]
- Bakır, M.; Karaaslan, M.; Karadag, F.; Dalgac, S.; Ünal, E.; Akgöl, O. Metamaterial sensor for transformer oil, and microfluidics. Appl. Comput. Electromagn. Soc. J. 2019, 34, 799. [Google Scholar]
- Lee, Y.; Kim, S.J.; Park, H.; Lee, B. Metamaterials and Metasurfaces for Sensor Applications. Sensors 2017, 17, 1726. [Google Scholar] [CrossRef] [Green Version]
- Luk’yanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Permittivity measurement of low-loss substrates based on split ring resonators. World J. Eng. Technol. 2017, 5, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Vélez, P.; Su, L.; Grenier, K.; Mata-Contreras, J.; Dubuc, D.; Martín, F. Microwave microfluidic sensor based on a microstrip splitter/combiner configuration and split ring Resonators (SRRs) for dielectric characterization of liquids. J. IEEE Sens. 2017, 17, 6589–6598. [Google Scholar] [CrossRef] [Green Version]
- Rawat, V.; Joglekar, S.; Bhagat, B.; Kale, S.N. Nanomaterial-Functionalized-Metamaterial-Inspired Resonators for Ultra-Sensitive and Selective H2S Sensing. In Proceedings of the IEEE Sensors, New Delhi, India, 28–31 October 2018; Volume 31, pp. 1–4. [Google Scholar] [CrossRef]
- Lee, H.J.; Yook, J.G. Biosensing using split-ring resonators at microwave regime. Appl. Phys. Lett. 2008, 92, 254103. [Google Scholar] [CrossRef]
- Bahar, A.A.M.; Zakaria, Z.; Arshad, M.M.; Isa, A.A.M.; Dasril, Y.; Alahnomi, R.A. Real time microwave biochemical sensor based on circular SIW approach for aqueous dielectric detection. Sci. Rep. 2019, 9, 5467. [Google Scholar] [CrossRef]
- Tamer, A.; Karadağ, F.; Ünal, E.; Abdulkarim, Y.I.; Deng, L.; Altintas, O.; Bakir, M.; Karaaslan, M. Metamaterial based sensor integrating transmission line for detection of branded and unbranded diesel fuel. Chem. Phys. Lett. 2020, 742, 137169. [Google Scholar] [CrossRef]
- Tamer, A.; Alkurt, F.O.; Altintas, O.; Karaaslan, M.; Unal, E.; Akgol, O.; Karadag, F.; Sabah, C. Transmission line integrated metamaterial based liquid sensor. Electrochem. Soc. 2018, 165, B251–B257. [Google Scholar] [CrossRef]
- Altıntaş, O.; Aksoy, M.; Ünal, E. Design of a metamaterial inspired omega shaped resonator based sensor for industrial implementations. Phys. E Low-dimens. Syst. Nanostruct. 2020, 116, 113734. [Google Scholar] [CrossRef]
- Altintaş, O.; Aksoy, M.; Ünal, E.; Karaaslan, M. Chemical liquid and transformer oil condition sensor based on metamaterial-inspired labyrinth resonator. Electrochem. Soc. 2019, 166, B482–B488. [Google Scholar] [CrossRef]
- Tümkaya, M.A.; Karaaslan, M.; Sabah, C. Metamaterial-based high efficiency portable sensor application for determining branded and unbranded fuel oil. Bull. Mater. Sci. 2018, 41, 91. [Google Scholar] [CrossRef] [Green Version]
- Tümkaya, M.A.; Karaaslan, M.; Sabah, C. Metamaterial-Based Fluid Sensor for Identifying Different Types of Fuel Oil Samples. Chin. J. Phys. 2018, 56, 1872–1878. [Google Scholar] [CrossRef]
- Tümkaya, M.A.; Dinçer, F.; Karaaslan, M.; Sabah, C. Sensitive Metamaterial Sensor for Distinction of Authentic and Inauthentic Fuel Samples. J. Electron. Mater. 2017, 46, 4955–4962. [Google Scholar] [CrossRef]
- Mehrotra, P.; Chatterjee, B.; Sen, S. EM-Wave Biosensors: A Review of RF, Microwave, mm-Wave and Optical Sensing. Sensors 2019, 19, 1013. [Google Scholar] [CrossRef] [Green Version]
Property | Unit | Diesel |
---|---|---|
Density at 60 °C | kg/m3 | 832.4 |
Water content | mg/kg | 160 |
Carbon content | % wt | 87.2 |
Heating value | MJ/kg | 43 |
Sulfur content | ppwt | 9.1 |
Oxygen content | % wt | 0.77 |
Hydrogen content | % wt | 12 |
Dielectric Constants (ε) | Loss Tangent (tanδ) | |||
---|---|---|---|---|
Frequency (GHz) | Diesel (Branded) | Diesel (Unbranded) | Diesel (Branded) | Diesel (Unbranded) |
8 | 2.73 | 2.47 | 0.18 | 0.213 |
9 | 2.66 | 2.42 | 0.21 | 0.24 |
10 | 2.60 | 2.35 | 0.239 | 0.262 |
11 | 2.54 | 2.28 | 0.263 | 0.28 |
12 | 2.46 | 2.21 | 0.282 | 0.291 |
Reference | Frequency Range (GHz) | Dielectric Constant | Loss Tangent (tan δ) | Publication Year | Resonant Frequency Shift (MHz) | Sensitivity (Amplitude Variation) in dB |
---|---|---|---|---|---|---|
Branded Diesel and Unbranded Diesel | ||||||
Current work | 8–12 | 2.73 and 2.47 | 0.18 and 0.213 | - | 120 | −3.2 |
[31] | 8–12 | 2.72 and 2.48 | 0.49 and 0.53 | 2020 | 60 | −0.8 |
[32] | 8–12 | 2.41 for Authentic and 1.5 for Inauthentic Gasoline | 0.81 for Authentic and 0.28 for Inauthentic Gasoline | 2018 | 500 | −1 |
[33] | 8–12 | 2.7 and 2.5 | 0.50 and 0.49 | 2020 | 172 | −0.9 |
[35] | 10–12 | 2.07 and 2.68 | 0.15 and 0.16 | 2018 | 72 | −1.9 |
[36] | 8–12 | 2.08 and 2.7 | 0.15 and 0.16 | 2018 | 104 | −2 |
[37] | 10–11 | 2.07 and 2.68 | 0.15 and 0.16 | 2017 | 100 | −1.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulkarim, Y.I.; Deng, L.; Karaaslan, M.; Dalgaç, Ş.; Mahmud, R.H.; Ozkan Alkurt, F.; Muhammadsharif, F.F.; Awl, H.N.; Huang, S.; Luo, H. The Detection of Chemical Materials with a Metamaterial-Based Sensor Incorporating Oval Wing Resonators. Electronics 2020, 9, 825. https://doi.org/10.3390/electronics9050825
Abdulkarim YI, Deng L, Karaaslan M, Dalgaç Ş, Mahmud RH, Ozkan Alkurt F, Muhammadsharif FF, Awl HN, Huang S, Luo H. The Detection of Chemical Materials with a Metamaterial-Based Sensor Incorporating Oval Wing Resonators. Electronics. 2020; 9(5):825. https://doi.org/10.3390/electronics9050825
Chicago/Turabian StyleAbdulkarim, Yadgar I., Lianwen Deng, Muharrem Karaaslan, Şekip Dalgaç, Rashad Hassan Mahmud, Fatih Ozkan Alkurt, Fahmi F. Muhammadsharif, Halgurd N. Awl, Shengxiang Huang, and Heng Luo. 2020. "The Detection of Chemical Materials with a Metamaterial-Based Sensor Incorporating Oval Wing Resonators" Electronics 9, no. 5: 825. https://doi.org/10.3390/electronics9050825
APA StyleAbdulkarim, Y. I., Deng, L., Karaaslan, M., Dalgaç, Ş., Mahmud, R. H., Ozkan Alkurt, F., Muhammadsharif, F. F., Awl, H. N., Huang, S., & Luo, H. (2020). The Detection of Chemical Materials with a Metamaterial-Based Sensor Incorporating Oval Wing Resonators. Electronics, 9(5), 825. https://doi.org/10.3390/electronics9050825