Selective Feature Anonymization for Privacy-Preserving Image Data Publishing
Abstract
:1. Introduction
- We introduce PPSGAN, an image anonymization deep neural network that preserves the privacy of individuals related to the image dataset without losing the usefulness of the entire dataset.
- We use the self-attention mechanism [18] to make the noise amplifier of PPSGAN apply different levels of privacy according to the importance of the feature. This mechanism allows PPSGAN to keep the original class label of each image, even in strict privacy conditions.
- We evaluate the quality and the utility of the image data anonymized with our model from different aspects, including the performance of the classifiers trained with the original data, processed with PPSGAN, and generated or modified with other methods.
2. Background
2.1. Generative Adversarial Networks
2.2. Differential Privacy
2.3. Self-Attention
3. PPSGAN
3.1. Model Architecture
3.2. Noise Amplifier
3.3. Zero-Noise Penalty
3.4. Adversarial Training
Algorithm 1 PPSGAN training with default values of , , , and . stands for - - and stands for - . |
|
4. Experiments
4.1. Experimental Details
4.2. Utility Performance on Classifier Training
4.3. Sample Diversity on CIFAR-10
4.4. t-SNE Visualization of the Latent Features
4.5. Anonymized Samples
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ren, M.; Triantafillou, E.; Ravi, S.; Snell, J.; Swersky, K.; Tenenbaum, J.B.; Larochelle, H.; Zemel, R.S. Meta-Learning for Semi-Supervised Few-Shot Classification. arXiv 2018, arXiv:1803.00676. [Google Scholar]
- Santoro, A.; Bartunov, S.; Botvinick, M.M.; Wierstra, D.; Lillicrap, T.P. One-shot Learning with Memory-Augmented Neural Networks. arXiv 2016, arXiv:1605.06065. [Google Scholar]
- Socher, R.; Ganjoo, M.; Manning, C.D.; Ng, A. Zero-Shot Learning Through Cross-Modal Transfer. In Advances in Neural Information Processing Systems 26; Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2013; pp. 935–943. [Google Scholar]
- Beaulieu-Jones, B.K.; Wu, Z.S.; Williams, C.; Lee, R.; Bhavnani, S.P.; Byrd, J.B.; Greene, C.S. Privacy-Preserving Generative Deep Neural Networks Support Clinical Data Sharing. Circ. Cardiovasc. Qual. Outcomes 2019, 12, e005122. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xiong, L.; Zhang, L.; Jiang, X. DPSynthesizer: Differentially Private Data Synthesizer for Privacy Preserving Data Sharing. Proc. VLDB Endow. 2014, 7, 1677–1680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Cormode, G.; Procopiuc, C.M.; Srivastava, D.; Xiao, X. PrivBayes: Private Data Release via Bayesian Networks. ACM Trans. Database Syst. 2017, 42, 25:1–25:41. [Google Scholar] [CrossRef]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.; PMLR: International Convention Centre: Sydney, Australia, 2017; Volume 70, pp. 214–223. [Google Scholar]
- Berthelot, D.; Schumm, T.; Metz, L. BEGAN: Boundary Equilibrium Generative Adversarial Networks. arXiv 2017, arXiv:1703.10717. [Google Scholar]
- Odena, A.; Olah, C.; Shlens, J. Conditional Image Synthesis with Auxiliary Classifier GANs. arXiv 2016, arXiv:1610.09585. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. arXiv 2014, arXiv:1406.2661. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Zhao, J.J.; Mathieu, M.; LeCun, Y. Energy-based Generative Adversarial Network. arXiv 2016, arXiv:1609.03126. [Google Scholar]
- Chaudhuri, K.; Monteleoni, C.; Sarwate, A.D. Differentially Private Empirical Risk Minimization. J. Mach. Learn. Res. 2011, 12, 1069–1109. [Google Scholar] [PubMed]
- Ma, L.; Sun, Q.; Georgoulis, S.; Gool, L.V.; Schiele, B.; Fritz, M. Disentangled Person Image Generation. arXiv 2017, arXiv:1712.02621. [Google Scholar]
- Ren, Z.; Lee, Y.J.; Ryoo, M.S. Learning to Anonymize Faces for Privacy Preserving Action Detection. arXiv 2018, arXiv:1803.11556. [Google Scholar]
- Kim, T.; Yang, J. Latent-Space-Level Image Anonymization With Adversarial Protector Networks. IEEE Access 2019, 7, 84992–84999. [Google Scholar] [CrossRef]
- Dwork, C. Differential Privacy. Automata, Languages and Programming; Bugliesi, M., Preneel, B., Sassone, V., Wegener, I., Eds.; Springer: Berlin, Germany, 2006; pp. 1–12. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved Training of Wasserstein GANs. arXiv 2017, arXiv:1704.00028. [Google Scholar]
- Nowozin, S.; Cseke, B.; Tomioka, R. f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization. In Advances in Neural Information Processing Systems 29; Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; pp. 271–279. [Google Scholar]
- Kodali, N.; Abernethy, J.; Hays, J.; Kira, Z. On Convergence and Stability of GANs. arXiv 2017, arXiv:1705.07215. [Google Scholar]
- Kim, T.; Cha, M.; Kim, H.; Lee, J.K.; Kim, J. Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. arXiv 2017, arXiv:1703.05192. [Google Scholar]
- Isola, P.; Zhu, J.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. arXiv 2016, arXiv:1611.07004. [Google Scholar]
- Choi, Y.; Choi, M.; Kim, M.; Ha, J.; Kim, S.; Choo, J. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation. arXiv 2017, arXiv:1711.09020. [Google Scholar]
- Zhu, J.; Park, T.; Isola, P.; Efros, A.A. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv 2017, arXiv:1703.10593. [Google Scholar]
- Sun, Q.; Tewari, A.; Xu, W.; Fritz, M.; Theobalt, C.; Schiele, B. A Hybrid Model for Identity Obfuscation by Face Replacement. arXiv 2018, arXiv:1804.04779. [Google Scholar]
- Fredrikson, M.; Jha, S.; Ristenpart, T. Model Inversion Attacks That Exploit Confidence Information and Basic Countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security; ACM: New York, NY, USA, 2015; pp. 1322–1333. [Google Scholar]
- Salimans, T.; Goodfellow, I.J.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved Techniques for Training GANs. arXiv 2016, arXiv:1606.03498. [Google Scholar]
- Krizhevsky, A.; Nair, V.; Hinton, G. CIFAR-10 (Canadian Institute for Advanced Research). Available online: http://www.cs.toronto.edu/~kriz/cifar.html (accessed on 3 May 2020).
- Dwork, C. Differential Privacy: A Survey of Results. In Theory and Applications of Models of Computation; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–19. [Google Scholar]
- Dwork, C.; McSherry, F.; Nissim, K.; Smith, A. Calibrating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography; Halevi, S., Rabin, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 265–284. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456. [Google Scholar]
- Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical Evaluation of Rectified Activations in Convolutional Network. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. arXiv 2015, arXiv:1505.04366. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385. [Google Scholar]
- LeCun, Y.; Cortes, C. MNIST handwritten digit database 2010. Available online: yann.lecun.com/exdb/mnist (accessed on 3 May 2020).
- Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv 2017, arXiv:1708.07747. [Google Scholar]
- Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Y Ng, A. Reading Digits in Natural Images with Unsupervised Feature Learning, NIPS Workshop on Deep Learning and Unsupervised Feature Learning 2011. Available online: ufldl.stanford.edu/housenumbers (accessed on 3 May 2020).
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. In Proceedings of the Neural Information Processing Systems NIPS, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: tensorflow.org (accessed on 3 May 2020).
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Chen, R.T.Q.; Behrmann, J.; Duvenaud, D.; Jacobsen, J.H. Residual Flows for Invertible Generative Modeling. arXiv 2019, arXiv:1906.02735. [Google Scholar]
- Dumoulin, V.; Belghazi, M.I.D.; Poole, B.; Lamb, A.; Arjovsky, M.; Mastropietro, O.; Courville, A. Adversarially Learned Inference. In Proceedings of the International Conference on Learning Representations ICLR, Toulon, France, 24–26 April 2017. [Google Scholar]
- Warde-Farley, D.; Bengio, Y. Improving Generative Adversarial Networks With Denoising Feature Matching. In Proceedings of the International Conference on Learning Representations ICLR, Toulon, France, 24–26 April 2017. [Google Scholar]
- Huang, X.; Li, Y.; Poursaeed, O.; Hopcroft, J.E.; Belongie, S.J. Stacked Generative Adversarial Networks. arXiv 2016, arXiv:1612.04357. [Google Scholar]
- Mao, Q.; Lee, H.Y.; Tseng, H.Y.; Ma, S.; Yang, M.H. Mode Seeking Generative Adversarial Networks for Diverse Image Synthesis. arXiv 2019, arXiv:1903.05628. [Google Scholar]
- Seward, C.; Unterthiner, T.; Bergmann, U.; Jetchev, N.; Hochreiter, S. First Order Generative Adversarial Networks. arXiv 2018, arXiv:1802.04591. [Google Scholar]
- Song, Y.; Ermon, S. Generative Modeling by Estimating Gradients of the Data Distribution. arXiv 2019, arXiv:1907.05600. [Google Scholar]
- Li, C.L.; Chang, W.C.; Cheng, Y.; Yang, Y.; Póczos, B. MMD GAN: Towards Deeper Understanding of Moment Matching Network. arXiv 2017, arXiv:1705.08584. [Google Scholar]
- Gong, X.; Chang, S.; Jiang, Y.; Wang, Z. AutoGAN: Neural Architecture Search for Generative Adversarial Networks. arXiv 2019, arXiv:1908.03835. [Google Scholar]
- van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the CVPR, Miami, FL, USA, 20–25 June 2009. [Google Scholar]
- Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep Learning Face Attributes in the Wild. In Proceedings of the International Conference on Computer Vision (ICCV), Santiago, Chile, 11–18 December 2015. [Google Scholar]
- Yu, F.; Zhang, Y.; Song, S.; Seff, A.; Xiao, J. LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop. arXiv 2015, arXiv:1506.03365. [Google Scholar]
Dataset Name | Resolution | Training Set | Test Set |
---|---|---|---|
MNIST | 60,000 | 10,000 | |
Fashion-MNIST | 60,000 | 10,000 | |
CIFAR-10 | 50,000 | 10,000 | |
SVHN | 73,257 | 26,032 |
Method | MNIST | Fashion-MNIST | CIFAR-10 | SVHN |
---|---|---|---|---|
Original Data | ||||
ACGAN | ||||
PPSGAN- | ||||
PPSGAN- | ||||
PPSGAN- | ||||
PPSGAN- |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Yang, J. Selective Feature Anonymization for Privacy-Preserving Image Data Publishing. Electronics 2020, 9, 874. https://doi.org/10.3390/electronics9050874
Kim T, Yang J. Selective Feature Anonymization for Privacy-Preserving Image Data Publishing. Electronics. 2020; 9(5):874. https://doi.org/10.3390/electronics9050874
Chicago/Turabian StyleKim, Taehoon, and Jihoon Yang. 2020. "Selective Feature Anonymization for Privacy-Preserving Image Data Publishing" Electronics 9, no. 5: 874. https://doi.org/10.3390/electronics9050874
APA StyleKim, T., & Yang, J. (2020). Selective Feature Anonymization for Privacy-Preserving Image Data Publishing. Electronics, 9(5), 874. https://doi.org/10.3390/electronics9050874