Delta Multi-Stage Interconnection Networks for Scalable Wireless On-Chip Communication
Abstract
:1. Introduction
2. Related Work
3. Implementation of an NoC Delta MIN Architecture
3.1. Additional Signals Mapping
3.2. Wireless Radio-Hub
3.3. Extension to Support Delta MINs Routing
4. Evaluation and Results
4.1. Noxim NoC Characterization
4.2. Experimental Setup
- Latency: the average packet transmission latency in terms of clock cycles. Transmission latency is computed as the difference between the clock cycle in which the last bit of a packet arrived at the destination and the clock cycle in which the first bit of the packet left the source.
- Energy consumption: the total energy consumption that includes routers, links, radio-hubs, and network-interfaces contributions. A more detailed description of the adopted energy models is available in [30].
- Traffic Random (TR): it is a scenario in which any node can send packets to any other node of the network (lack of specialization). Even if this scenario is synthetic, it provides a stress test to assess the impact of the introduction of radio on-chip communications for a set of nodes in a network in which there are no specialized nodes;
- Traffic Table (TT): it is a scenario in which sources/destinations communication flows are described in a traffic table. Traffic tables can be recreated from traces of real applications, are representative of a more realistic traffic pattern in which a subset of communications between specific source/destination pairs is more intensive than the others. This may be the case, for example, of NoCs in which some nodes act as memory controllers, thus serving the memory read/write access requests coming from other nodes.
4.3. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Banerjee, N.; Vellanki, P.; Chatha, K.S. A power and performance model for network-on-chip architectures. In Proceedings of the conference on Design, automation and test in Europe-Volume 2, IEEE Computer Society, Paris, France, 16–20 February 2004; IEEE: Piscataway, NJ, USA, 2004; p. 21250. [Google Scholar]
- Biberman, A.; Preston, K.; Hendry, G.; Sherwood-Droz, N.; Chan, J.; Levy, J.S.; Lipson, M.; Bergman, K. Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2011, 7, 7. [Google Scholar] [CrossRef]
- Yang, L.; Liu, W.; Jiang, W.; Li, M.; Yi, J.; Sha, E.H.M. Application mapping and scheduling for network-on-chip-based multiprocessor system-on-chip with fine-grain communication optimization. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24, 3027–3040. [Google Scholar] [CrossRef]
- Pande, P.P.; Grecu, C.; Jones, M.; Ivanov, A.; Saleh, R. Performance evaluation and design trade-offs for network-on-chip interconnect architectures. IEEE Trans. Comput. 2005, 54, 1025–1040. [Google Scholar] [CrossRef]
- Ogras, U.Y.; Bogdan, P.; Marculescu, R. An analytical approach for network-on-chip performance analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits and Syst. 2010, 29, 2001–2013. [Google Scholar] [CrossRef]
- Chang, K.; Deb, S.; Ganguly, A.; Yu, X.; Sah, S.P.; Pande, P.P.; Belzer, B.; Heo, D. Performance evaluation and design trade-offs for wireless network-on-chip architectures. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2012, 8, 23. [Google Scholar] [CrossRef]
- Bononi, L.; Concer, N. Simulation and analysis of network on chip architectures: ring, spidergon and 2D mesh. In Proceedings of the Conference on Design, Automation and Test in Europe: Designers’ Forum, Munich, Germany, 6–10 March 2006; European Design and Automation Association, ACM: New York, NY, USA, 2006; pp. 154–159. [Google Scholar]
- Agarwal, A.; Iskander, C.; Shankar, R. Survey of network on chip (noc) architectures & contributions. J. Eng. Comput. Archit. 2009, 3, 21–27. [Google Scholar]
- Chen, J.; Li, C.; Gillard, P. Network-on-chip (NoC) topologies and performance: A review. In Proceedings of the 2011 Newfoundland Electrical and Computer Engineering Conference (NECEC), St. John’s, Canada, 1 November 2011; pp. 1–6. [Google Scholar]
- Ansari, A.Q.; Ansari, M.R.; Khan, M.A. Performance evaluation of various parameters of network-on-chip (noc) for different topologies. In Proceedings of the Annual IEEE India Conference (INDICON), New Delhi, India, 17–20 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–4. [Google Scholar]
- Aydi, Y.; Meftali, S.; Dekeyser, J.L.; Abid, M. Design and performance evaluation of a reconfigurable delta MIN for MPSOC. In Proceedings of the Internatonal Conference on Microelectronics, Cairo, Egypt, 29–31 December 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 115–118. [Google Scholar]
- Bhardwaj, V.P.; Chauhan, P.; Indian Institute of Management Mayurbhanj Complex. On Analysis and Discussion of Various Performance Parameters of Omega and Advance Omega Interconnection Network. In Proceedings of the 4th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, 14–15 December 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–4. [Google Scholar]
- Kruskal, C.P.; Snir, M. A unified theory of interconnection network structure. Theor. Comput. Sci. 1986, 48, 75–94. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Wang, Y. SD-MAC: Design and Synthesis of a Hardware-Efficient Collision-Free QoS-Aware MAC Protocol for Wireless Network-on-Chip. IEEE Trans. Comput. 2008, 57, 1230–1245. [Google Scholar] [CrossRef]
- Mnejja, S.; Aydi, Y.; Abid, M.; Monteleone, S.; Palesi, M.; Patti, D. Implementing On-Chip Wireless Communication in Multi-stage Interconnection NoCs. In Proceedings of the International Conference on Advanced Information Networking and Applications, Caserta, Italy, 15–17 April 2020; Springer: Cham, Switzerland, 2020; pp. 533–546. [Google Scholar]
- Yunus, N.A.M.; Othman, M.; Hanapi, Z.M.; Lun, K.Y. Reliability Review of Interconnection Networks. IETE Tech. Rev. 2016, 33, 596–606. [Google Scholar] [CrossRef]
- Rajkumar, S.; Goyal, N.K. Review of Multistage Interconnection Networks Reliability and Fault-Tolerance. IETE Tech. Rev. 2016, 33, 223–230. [Google Scholar] [CrossRef]
- Achballah, A.B.; Othman, S.B.; Saoud, S.B. Problems and challenges of emerging technology networks- on- chip: A review. Microprocess. Microsyst. 2017, 53, 1–20. [Google Scholar] [CrossRef]
- Pande, P.P.; Kim, R.G.; Choi, W.; Chen, Z.; Marculescu, D.; Marculescu, R. The (low) power of less wiring: Enabling energy efficiency in many-core platforms through wireless noc. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, Austin, TX, USA, 2–6 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 165–169. [Google Scholar]
- Kim, R.G.; Choi, W.; Chen, Z.; Pande, P.P.; Marculescu, D.; Marculescu, R. Wireless NoC and dynamic VFI codesign: Energy efficiency without performance penalty. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24, 2488–2501. [Google Scholar] [CrossRef]
- Catania, V.; Mineo, A.; Monteleone, S.; Palesi, M.; Patti, D. Improving energy efficiency in wireless network-on-chip architectures. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2018, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- Catania, V.; Mineo, A.; Monteleone, S.; Palesi, M.; Patti, D. Energy efficient transceiver in wireless network on chip architectures. In Proceedings of the 2016 Conference on Design, Automation & Test in Europe, EDA Consortium, Dresden, Germany, 14–18 March 2016; ACM: New York, NY, USA, 2016; pp. 1321–1326. [Google Scholar]
- Dai, P.; Chen, J.; Zhao, Y.; Lai, Y.H. A Study of a Wire-wireless Hybrid NoC Architecture with an Energy-proportional Multicast Scheme for Energy Efficiency. Comput. Electr. Eng. 2015, 45, 402–416. [Google Scholar] [CrossRef]
- Tavakoli, E.; Tabandeh, M.; Kaffash, S.; Raahemi, B. Multi-hop Communications on Wireless Network-on-chip Using Optimized Phased-array Antennas. Comput. Electr. Eng. 2013, 39, 2068–2085. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Y.; Li, J.; Kikkawa, T. Design of multi-channel wireless NoC to improve on-chip communication capacity! In Proceedings of the Fifth ACM/IEEE International Symposium, Pittsburgh, PA, USA, 1–4 May 2011; pp. 177–184. [Google Scholar]
- Wang, C.; Hu, W.H.; Bagherzadeh, N. A wireless network-on-chip design for multicore platforms. In Proceedings of the 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing, Ayia Napa, Cyprus, 9–11 February 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 409–416. [Google Scholar]
- Lee, S.B.; Tam, S.W.; Pefkianakis, I.; Lu, S.; Chang, M.F.; Guo, C.; Reinman, G.; Peng, C.; Naik, M.; Zhang, L.; et al. A scalable micro wireless interconnect structure for CMPs. In Proceedings of the 15th Annual International Conference on Mobile Computing and Networking, ACM, Beijing China, 20–25 September 2009; pp. 217–228. [Google Scholar]
- Wu, R.; Wang, Y.; Zhao, D. A low-cost deadlock-free design of minimal-table rerouted xy-routing for irregular wireless nocs. In Proceedings of the Fourth ACM/IEEE International Symposium on Networks-on-Chip, Grenoble, France, 3–6 May 2010; pp. 199–206. [Google Scholar]
- He, R.; Delgado-Frias, J.G. Fault Tolerant Interleaved Switching Fabrics For Scalable High-Performance Routers. IEEE Trans. Parallel Distrib. Syst. 2007, 18, 1727–1739. [Google Scholar] [CrossRef]
- Catania, V.; Mineo, A.; Monteleone, S.; Palesi, M.; Patti, D. Cycle-Accurate Network on Chip Simulation with Noxim. ACM Trans. Model. Comput. Simul. (TOMACS) 2016, 27, 4:1–4:25. [Google Scholar] [CrossRef]
- Palesi, M.; Patti, D.; Fazzino, F.; Monteleone, S. GitHub, Noxim—The NoC Simulator. 2019. Available online: https://github.com/davidepatti/noxim (accessed on 18 May 2020).
- Palesi, M.; Collotta, M.; Mineo, A.; Catania, V. An Efficient Radio Access Control Mechanism for Wireless Network-on-Chip Architectures. J. Low Power Electr. Appl. 2015, 5, 38–56. [Google Scholar] [CrossRef] [Green Version]
- Abadal, S.; Alarcón, E.; Cabellos-Aparicio, A.; Lemme, M.C.; Nemirovsky, M. Graphene-enabled wireless communication for massive multicore architectures. IEEE Commun. Mag. 2013, 51, 137–143. [Google Scholar] [CrossRef]
- Vien, Q.T.; Agyeman, M.O.; Le, T.A.; Mak, T. On the nanocommunications at THz band in graphene-enabled wireless network-on-chip. Math. Problems Eng. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Abadal, S.; Hosseininejad, S.E.; Cabellos-Aparicio, A.; Alarcón, E. Graphene-based terahertz antennas for area-constrained applications. In Proceedings of the 40th International Conference on Telecommunications and Signal Processing (TSP), Barcelona, Spain, 5–7 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 817–820. [Google Scholar]
- Mohapatra, P. Wormhole routing techniques for directly connected multicomputer systems. ACM Comput. Surv. 1998, 30, 374–410. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Network size [cores/(switches × stages)] | 64/, 256/, 1024/ |
64/256 radio-hubs number | 4, 8, 16 |
1024 radio-hubs number | 16, 32, 64 |
Switching technique | Wormhole [36] |
Radio Access Control Mechanism | Token Packet [32] |
Wireless data rate [Gbps] | 16 |
Packet length [flit] | 8 |
Flit size [bit] | 64 |
Router input buffer size [flit] | 4 |
Radio-hub input, antenna buffer size [flit] | 4 |
Simulation Time | 100,000 cycles |
Repetitions | 10 |
Without Wireless | With Wireless | |||||||
---|---|---|---|---|---|---|---|---|
Size | Topology | Traffic | Saturation Break Point PIR (pkts/s) | Avg Delay (Cycles) (Before Saturation) | Avg Energy (mJ) (Before Saturation) | Saturation Break Point PIR (pkts/s) | Avg Delay (Cycles) (Before Saturation) | Avg Energy (mJ) (Before Saturation) |
64 | Delta MIN | TR | 0.02150 | 27.437 | 0.103 | 0.02150 | 27.256 | 0.128 |
TR | 0.02150 | 27.462 | 0.103 | 0.02150 | 27.183 | 0.154 | ||
TR | 0.02160 | 27.566 | 0.103 | 0.02160 | 27.271 | 0.205 | ||
TT | 0.02736 | 21.661 | 0.081 | 0.04560 | 16.571 | 0.109 | ||
TT | 0.02277 | 20.362 | 0.082 | 0.04807 | 15.189 | 0.137 | ||
TT | 0.02304 | 20.119 | 0.085 | 0.04864 | 15.268 | 0.195 | ||
64 | Mesh | TR | 0.01476 | 21.776 | 0.086 | 0.01476 | 21.699 | 0.112 |
TR | 0.01476 | 21.743 | 0.086 | 0.01476 | 21.540 | 0.137 | ||
TR | 0.01485 | 21.956 | 0.086 | 0.01485 | 21.342 | 0.188 | ||
TT | 0.02700 | 29.426 | 0.081 | 0.04800 | 16.412 | 0.109 | ||
TT | 0.01800 | 27.657 | 0.081 | 0.04800 | 14.093 | 0.135 | ||
TT | 0.01098 | 26.234 | 0.081 | 0.04880 | 12.875 | 0.187 | ||
256 | Delta MIN | TR | 0.01900 | 31.409 | 0.425 | 0.01900 | 31.366 | 0.450 |
TR | 0.01910 | 31.569 | 0.426 | 0.01910 | 31.570 | 0.476 | ||
TR | 0.01910 | 31.546 | 0.426 | 0.01910 | 31.519 | 0.527 | ||
TT | 0.04900 | 26.532 | 0.321 | 0.04410 | 20.809 | 0.347 | ||
TT | 0.04900 | 27.179 | 0.326 | 0.04490 | 22.505 | 0.380 | ||
TT | 0.02835 | 23.407 | 0.326 | 0.04725 | 16.907 | 0.435 | ||
256 | Mesh | TR | 0.00850 | 35.629 | 0.348 | 0.00850 | 35.641 | 0.373 |
TR | 0.00850 | 35.633 | 0.348 | 0.00850 | 35.518 | 0.398 | ||
TR | 0.00850 | 35.603 | 0.348 | 0.00850 | 35.554 | 0.449 | ||
TT | 0.02700 | 52.150 | 0.319 | 0.04800 | 16.390 | 0.346 | ||
TT | 0.01970 | 57.061 | 0.322 | 0.04840 | 15.054 | 0.374 | ||
TT | 0.00927 | 50.701 | 0.320 | 0.04841 | 12.624 | 0.423 | ||
1024 | Delta MIN | TR | 0.01800 | 36.834 | 1.769 | 0.01800 | 36.838 | 1.870 |
TR | 0.01800 | 36.853 | 1.769 | 0.01800 | 37.108 | 1.971 | ||
TR | 0.01800 | 36.822 | 1.769 | 0.01800 | 37.841 | 2.174 | ||
TT | 0.05000 | 30.939 | 1.287 | 0.04500 | 21.248 | 1.390 | ||
TT | 0.02997 | 27.274 | 1.291 | 0.04995 | 17.538 | 1.504 | ||
TT | 0.02790 | 27.463 | 1.314 | 0.04960 | 16.747 | 1.737 | ||
1024 | Mesh | TR | 0.00470 | 59.304 | 1.397 | 0.00470 | 59.258 | 1.499 |
TR | 0.00471 | 59.415 | 1.398 | 0.00471 | 59.433 | 1.600 | ||
TR | 0.00473 | 59.637 | 1.398 | 0.04730 | 59.752 | 1.813 | ||
TT | 0.01881 | 63.141 | 1.275 | 0.04807 | 14.276 | 1.377 | ||
TT | 0.00819 | 59.012 | 1.273 | 0.04823 | 12.474 | 1.477 | ||
TT | 0.00760 | 69.516 | 1.292 | 0.04840 | 12.688 | 1.695 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mnejja, S.; Aydi, Y.; Abid, M.; Monteleone, S.; Catania, V.; Palesi, M.; Patti, D. Delta Multi-Stage Interconnection Networks for Scalable Wireless On-Chip Communication. Electronics 2020, 9, 913. https://doi.org/10.3390/electronics9060913
Mnejja S, Aydi Y, Abid M, Monteleone S, Catania V, Palesi M, Patti D. Delta Multi-Stage Interconnection Networks for Scalable Wireless On-Chip Communication. Electronics. 2020; 9(6):913. https://doi.org/10.3390/electronics9060913
Chicago/Turabian StyleMnejja, Sirine, Yassine Aydi, Mohamed Abid, Salvatore Monteleone, Vincenzo Catania, Maurizio Palesi, and Davide Patti. 2020. "Delta Multi-Stage Interconnection Networks for Scalable Wireless On-Chip Communication" Electronics 9, no. 6: 913. https://doi.org/10.3390/electronics9060913
APA StyleMnejja, S., Aydi, Y., Abid, M., Monteleone, S., Catania, V., Palesi, M., & Patti, D. (2020). Delta Multi-Stage Interconnection Networks for Scalable Wireless On-Chip Communication. Electronics, 9(6), 913. https://doi.org/10.3390/electronics9060913