A Human-Guided Machine Learning Approach for 5G Smart Tourism IoT
Abstract
:1. Introduction
2. System Architecture and Method
2.1. IoT Technology
2.2. 5G IoT for Smart Tourism
3. Human-Guided Machine Learning
3.1. Human-Guided Machine Learning Introduction
3.2. Tourist Behavior Introduction
3.3. Use Human-Guided Machine Learning to Analyze Tourist Behavior
4. Experimental Analysis and Simulation
- The user browses travel information in order to determine whether to travel to a certain tourist destination.
- Judging the practical value of a desired tourist destination based on information such as user historical orders.
4.1. Dataset Labeling Method
4.2. KNN Classification for Tourist Behavior
4.3. Human-Guided Machine Learning-Based KNN Classification for Tourist Behavior
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Solmaz, G.; Wu, F.-J.; Cirillo, F.; Kovacs, E.; Santana, J.R.; Sánchez, L.; Sotres, P.; Munoz, L. Toward Understanding Crowd Mobility in Smart Cities through the Internet of Things. IEEE Commun. Mag. 2019, 57, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, A.K.; Tripathy, P.K.; Ray, N.; Mohanty, S.P. iTour: The Future of Smart Tourism: An IoT Framework for the Independent Mobility of Tourists in Smart Cities. IEEE Consum. Electron. Mag. 2018, 7, 32–37. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Wu, Y.; Rong, B.; Salehian, K.; Gagnon, G. Cloud Transmission: A New Spectrum-Reuse Friendly Digital Terrestrial Broadcasting Transmission System. IEEE Trans. Broadcast. 2012, 58, 329–337. [Google Scholar] [CrossRef]
- Mora, L.; Bolici, R.; Deakin, M. The First Two Decades of Smart-City Research: A Bibliometric Analysis. J. Urban Technol. 2017, 24, 3–27. [Google Scholar] [CrossRef]
- Rong, B.; Qian, Y.; Lu, K.; Chen, H.-H.; Guizani, M. Call Admission Control Optimization in WiMAX Networks. IEEE Trans. Veh. Technol. 2008, 57, 2509–2522. [Google Scholar] [CrossRef]
- Lacinák, M.; Ristvej, J. Smart City, Safety and Security. Procedia Eng. 2017, 192, 522–527. [Google Scholar] [CrossRef]
- Sun, S.; Kadoch, M.; Gong, L.; Rong, B. Integrating network function virtualization with SDR and SDN for 4G/5G networks. IEEE Netw. 2015, 29, 54–59. [Google Scholar] [CrossRef]
- Hung, J.C. The smart-travel system: Utilising cloud services to aid traveller with personalised requirement. Int. J. Web Grid Serv. 2012, 8, 279. [Google Scholar] [CrossRef]
- Gretzel, U.; Sigala, M.; Xiang, Z.; Koo, C. Smart tourism: Foundations and de-velopments. Electron. Mark. 2015, 25, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Gautam, B.P.; Asami, H.; Batajoo, A.; Fujisaki, T. Regional Revival through IoT Enabled Smart Tourism Process Framework (STPF): A Proposal. In Proceedings of the 2016 Joint 8th International Conference on Soft Computing and Intelligent Systems (SCIS) and 17th International Symposium on Advanced Intelligent Systems (ISIS), Sapporo, Japan, 25–28 August 2016; pp. 743–748. [Google Scholar]
- Balandina, E.; Balandin, S.; Koucheryavy, Y.; Mouromtsev, D.; Ekaterina, B.; Sergey, B.; Yevgeni, K.; Dmitry, M. Innovative e-Tourism Services on Top of Geo2Tag LBS Platform. In Proceedings of the 2015 11th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Bangkok, Thailand, 23–27 November 2015; pp. 752–759. [Google Scholar]
- Balandina, E.; Balandin, S.; Koucheryavy, Y.; Mouromtsev, D. IoT Use Cases in Healthcare and Tourism. In Proceedings of the 2015 IEEE 17th Conference on Business Informatics, Lisbon, Portugal, 13–16 July 2015; Volume 2, pp. 37–44. [Google Scholar]
- Hung, J.C.; Hsu, V.; Wang, Y.-B. A Smart-Travel System Based on Social Network Service for Cloud Environment. In Proceedings of the 2011 Third International Conference on Intelligent Networking and Collaborative Systems, Fukuoka, Japan, 30 November–2 December 2011; pp. 514–519. [Google Scholar]
- Muthuraman, S.; Al Haziazi, M. Smart Tourism Destination—New Exploration towards Sustainable Development in Sultanate of Oman. In Proceedings of the 2019 5th International Conference on Information Management (ICIM), Cambridge, UK, 24–27 March 2019; pp. 332–335. [Google Scholar]
- Gcaba, O.; Dlodlo, N. The internet of things for South African tourism. In Proceedings of the 2016 IST-Africa Week Conference, Durban, South Africa, 11–13 May 2016; pp. 1–8. [Google Scholar]
- Tan, L.; Wang, N. Future internet: The internet of things. In Proceedings of the 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22 August 2010; Volume 5. [Google Scholar]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horizons 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Lei, Y.; Ma, P.; Zhao, L. The Internet of Things brings new wave of the information industry. Int. J. Comput. Sci. Netw. Secur. 2011, 11, 15–21. [Google Scholar]
- Werthner, H.; Klein, S. Information Technology and Tourism: A Challenging Ralationship; Springer-Verlag Wien: Vienna, Austria, 1999. [Google Scholar]
- Lin, Y. The Application of the Internet of Things in Hainan Tourism Scenic Spot. In Proceedings of the 2011 Seventh International Conference on Computational Intelligence and Security, Hainan, China, 3–4 December 2011; pp. 1549–1553. [Google Scholar]
- Guo, X.; Zeng, T.; Wang, Y.; Zhang, J. Fuzzy TOPSIS Approaches for Assessing the Intelligence Level of IoT-Based Tourist Attractions. IEEE Access 2018, 7, 1195–1207. [Google Scholar] [CrossRef]
- Kamar, E. Directions in Hybrid Intelligence: Complementing AI Systems with Human Intelligence. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, New York, NY, USA, 9–15 July 2016; pp. 4070–4073. [Google Scholar]
- Zheng, N.; Liu, Z.-Y.; Ren, P.-J.; Ma, Y.-Q.; Chen, S.-T.; Yu, S.-Y.; Xue, J.-R.; Chen, B.-D.; Wang, F.-Y. Hybrid-augmented intelligence: Collaboration and cognition. Front. Inf. Technol. Electron. Eng. 2017, 18, 153–179. [Google Scholar] [CrossRef]
- Liang, H.; Yang, L.; Cheng, H.; Tu, W.; Xu, M. Human-in-the-loop reinforcement learning. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017. [Google Scholar]
- Barnes, M.J.; Chen, J.Y.; Jentsch, F.; Redden, E.; Light, K. An Overview of Humans and Autonomy for Military Environments: Safety, Types of Autonomy, Agents, and User Interfaces. In Proceedings of the 10th international conference on Engineering Psychology and Cognitive Ergonomics: Applications and Services, Las Vegas, NV, USA, 21–26 July 2013; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Dellermann, D.; Lipusch, N.; Ebel, P. Integrating Ecosystem Intelligence with the Hybrid Intelligence Accelerator. SSRN Electron. J. 2017, 61, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Sayed, A.H.; Yousef, N.R. Wireless location. In Wiley Encyclopedia of Telecommunications; Proakis, J., Ed.; Wiley: New York, NY, USA, 2003. [Google Scholar]
- Gustafsson, F.; Gunnarsson, F. Mobile positioning using wireless networks: Possibilities and fundamental limitations based on available wireless network measurements. IEEE Signal Process. Mag. 2005, 22, 41–53. [Google Scholar] [CrossRef]
- Spirito, M. On the accuracy of cellular mobile station location estimation. IEEE Trans. Veh. Technol. 2001, 50, 674–685. [Google Scholar] [CrossRef]
- Weiss, A. On the accuracy of a cellular location system based on rss measurements. IEEE Trans. Veh. Technol. 2003, 52, 1508–1518. [Google Scholar] [CrossRef]
- Sayed, A.H.; Tarighat, A.; Khajehnouri, N. Network-based wireless location: Challenges faced in developing techniques for accurate wireless location information. IEEE Signal Process. Mag. 2005, 22, 24–40. [Google Scholar] [CrossRef]
- Chan, Y.; Ho, K.C. A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 1994, 42, 1905–1915. [Google Scholar] [CrossRef] [Green Version]
- Quek, Y.; Woo, W.L.; Logenthiran, T. DC equipment identification using K-means clustering and kNN classification techniques. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2017. [Google Scholar]
- Zhou, L.; Wang, L.; Ge, X.; Shi, Q. A clustering-Based KNN improved algorithm CLKNN for text classification. In Proceedings of the 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010), Wuhan, China, 6–7 March 2010; Volume 3. [Google Scholar]
- Sun, S.; Huang, R. An adaptive k-nearest neighbor algorithm. In Proceedings of the 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, China, 10–12 August 2010; Volume 1. [Google Scholar]
- Keller, J.M.; Gray, M.R.; Givens, J.A. A fuzzy K-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 1985, 4, 580–585. [Google Scholar] [CrossRef]
- Yang, L. K-Nearest Neighbor Classification Based on Semantic Distance. J. Softw. 2005, 16, 2054. [Google Scholar] [CrossRef]
- Bradley, A. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- Slaby, A. ROC Analysis with Matlab. In Proceedings of the 2007 29th International Conference on Information Technology Interfaces, Cavtat, Croatia, 25–28 June 2007. [Google Scholar]
Algorithm | Advantages | Disadvantages |
---|---|---|
Decision Tree | There is no need to generalize the data like for other algorithms, such as removing redundant or blank attributes. |
|
Bayes | The estimated parameters required are few, and the algorithm is simple. |
|
Support Vector Machine (SVM) | It is advantageous when the sample data capacity is small. |
|
KNN | It is simple, effective, and suitable for the automatic classification of class domains with relatively large sample sizes. | When the samples are unbalanced, the prediction accuracy of rare categories is low. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, R.; Lou, Y.; Kadoch, M.; Cheriet, M. A Human-Guided Machine Learning Approach for 5G Smart Tourism IoT. Electronics 2020, 9, 947. https://doi.org/10.3390/electronics9060947
Peng R, Lou Y, Kadoch M, Cheriet M. A Human-Guided Machine Learning Approach for 5G Smart Tourism IoT. Electronics. 2020; 9(6):947. https://doi.org/10.3390/electronics9060947
Chicago/Turabian StylePeng, Rongqun, Yingxi Lou, Michel Kadoch, and Mohamed Cheriet. 2020. "A Human-Guided Machine Learning Approach for 5G Smart Tourism IoT" Electronics 9, no. 6: 947. https://doi.org/10.3390/electronics9060947
APA StylePeng, R., Lou, Y., Kadoch, M., & Cheriet, M. (2020). A Human-Guided Machine Learning Approach for 5G Smart Tourism IoT. Electronics, 9(6), 947. https://doi.org/10.3390/electronics9060947