Battery Energy Management of Autonomous Electric Vehicles Using Computationally Inexpensive Model Predictive Control
Abstract
:1. Introduction
1.1. Literature Review
1.2. Research Contribution
1.3. Paper Organization
2. Vehicle and Battery Dynamics
2.1. Vehicle Longitudinal Dynamics
2.2. Battery Dynamics
2.2.1. Continuous-Time SOC Dynamics
2.2.2. Motor Dynamics
2.2.3. Discrete-Time Battery Dynamics
2.3. Discrete-Time Model for Implementation
3. Optimal Control Problem Formulation
4. Practical Considerations for Real-Time Implementation of MPC
4.1. Dynamic Programming
4.2. Model Predictive Control
4.2.1. Quadratic Cost Simplification
4.2.2. Real-Time Computational Feasibility
5. Strategies for Computational Load Reduction in MPC
5.1. Sampling-Time Adjustment
5.2. Warmstarting
5.3. Move Blocking
6. Simulation Results
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wadud, Z.; MacKenzie, D.; Leiby, P. Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles. Transp. Res. Part A Policy Pract. 2016, 86, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Masood, K.; Molfino, R.; Zoppi, M. Simulated Sensor Based Strategies for Obstacle Avoidance Using Velocity Profiling for Autonomous Vehicle FURBOT. Electronics 2020, 9, 883. [Google Scholar] [CrossRef]
- Li, N.; Oyler, D.W.; Zhang, M.; Yildiz, Y.; Kolmanovsky, I.; Girard, A.R. Game theoretic modeling of driver and vehicle interactions for verification and validation of autonomous vehicle control systems. IEEE Trans. Control Syst. Technol. 2017, 26, 1782–1797. [Google Scholar] [CrossRef] [Green Version]
- Han, K.; Li, N.; Kolmanovsky, I.; Girard, A.; Wang, Y.; Filev, D.; Dai, E. Hierarchical Optimization of Speed and Gearshift Control for Battery Electric Vehicles Using Preview Information. In Proceedings of the IEEE American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020; pp. 4913–4919. [Google Scholar]
- Han, J.; Sciarretta, A.; Ojeda, L.L.; De Nunzio, G.; Thibault, L. Safe-and eco-driving control for connected and automated electric vehicles using analytical state-constrained optimal solution. IEEE Trans. Intell. Veh. 2018, 3, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Ersal, T.; Kolmanovsky, I.; Masoud, N.; Ozay, N.; Scruggs, J.; Vasudevan, R.; Orosz, G. Connected and automated road vehicles: State of the art and future challenges. Veh. Syst. Dyn. 2020, 58, 672–704. [Google Scholar] [CrossRef]
- Tate, L.; Hochgreb, S.; Hall, J.; Bassett, M. Energy Efficiency of Autonomous Car Powertrain; Technical Report; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Chen, T.D.; Kockelman, K.M.; Hanna, J.P. Operations of a shared, autonomous, electric vehicle fleet: Implications of vehicle & charging infrastructure decisions. Transp. Res. Part A Policy Pract. 2016, 94, 243–254. [Google Scholar]
- Zeng, X.; Wang, J. Globally energy-optimal speed planning for road vehicles on a given route. Transp. Res. Part C Emerg. Technol. 2018, 93, 148–160. [Google Scholar] [CrossRef]
- Chen, D.; Kim, Y.; Stefanopoulou, A.G. State of charge node planning with segmented traffic information. In Proceedings of the IEEE Annual American Control Conference (ACC), Milwaukee, WI, USA, 27–29 June 2018; pp. 4969–4974. [Google Scholar]
- Wan, N.; Vahidi, A.; Luckow, A. Optimal speed advisory for connected vehicles in arterial roads and the impact on mixed traffic. Transp. Res. Part C Emerg. Technol. 2016, 69, 548–563. [Google Scholar] [CrossRef]
- McDonough, K.; Kolmanovsky, I.; Filev, D.; Szwabowski, S.; Yanakiev, D.; Michelini, J. Stochastic fuel efficient optimal control of vehicle speed. In Optimization and Optimal Control in Automotive Systems; Springer: Berlin, Germany, 2014; pp. 147–162. [Google Scholar]
- Mehta, P.; Meyn, S. Q-learning and Pontryagin’s minimum principle. In Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference, Shanghai, China, 15–19 December 2009; pp. 3598–3605. [Google Scholar]
- Lee, H.; Song, C.; Kim, N.; Cha, S.W. Comparative Analysis of Energy Management Strategies for HEV: Dynamic Programming and Reinforcement Learning. IEEE Access 2020, 8, 67112–67123. [Google Scholar] [CrossRef]
- Lee, H.; Kang, C.; Park, Y.I.; Kim, N.; Cha, S.W. Online Data-Driven Energy Management of a Hybrid Electric Vehicle Using Model-Based Q-Learning. IEEE Access 2020, 8, 84444–84454. [Google Scholar] [CrossRef]
- Li, S.; Li, N.; Girard, A.; Kolmanovsky, I. Decision making in dynamic and interactive environments based on cognitive hierarchy theory: Formulation, solution, and application to autonomous driving. arXiv 2019, arXiv:1908.04005. [Google Scholar]
- Kouvaritakis, B.; Cannon, M. Model Predictive Control; Springer: Charm, Switzerland, 2016. [Google Scholar]
- Nguyen, T.W.; Islam, S.A.U.; Bruce, A.L.; Goel, A.; Bernstein, D.S.; Kolmanovsky, I.V. Output-Feedback RLS-Based Model Predictive Control. In Proceedings of the American Control Conference (ACC), Denver, CO, USA, 1–3 July 2020. [Google Scholar]
- Han, J.; Vahidi, A.; Sciarretta, A. Fundamentals of energy efficient driving for combustion engine and electric vehicles: An optimal control perspective. Automatica 2019, 103, 558–572. [Google Scholar] [CrossRef]
- Prakash, N.; Cimini, G.; Stefanopoulou, A.G.; Brusstar, M.J. Assessing fuel economy from automated driving: Influence of preview and velocity constraints. In Proceedings of the ASME 2016 Dynamic Systems and Control Conference, Boston, MA, USA, 6–8 July 2016. [Google Scholar]
- Seok, J.; Wang, Y.; Filev, D.; Kolmanovsky, I.; Girard, A. Energy-Efficient Control Approach for Automated HEV and BEV With Short-Horizon Preview Information. In Proceedings of the ASME 2018 Dynamic Systems and Control Conference, Atlanta, GA, USA, 30 September–3 October 2018. [Google Scholar]
- HomChaudhuri, B.; Vahidi, A.; Pisu, P. Fast model predictive control-based fuel efficient control strategy for a group of connected vehicles in urban road conditions. IEEE Trans. Control Syst. Technol. 2016, 25, 760–767. [Google Scholar] [CrossRef]
- Jia, Y.; Jibrin, R.; Itoh, Y.; Görges, D. Energy-optimal adaptive cruise control for electric vehicles in both time and space domain based on model predictive control. IFAC-PapersOnLine 2019, 52, 13–20. [Google Scholar] [CrossRef]
- Kim, Y.; Figueroa-Santos, M.; Prakash, N.; Baek, S.; Siegel, J.B.; Rizzo, D.M. Co-optimization of speed trajectory and power management for a fuel-cell/battery electric vehicle. Appl. Energy 2020, 260, 114254. [Google Scholar] [CrossRef]
- Brackstone, M.; McDonald, M. Car-following: A historical review. Transp. Res. Part F Traffic Psychol. Behav. 1999, 2, 181–196. [Google Scholar] [CrossRef]
- National Highway Traffic Safety Administration. Summary of State Speed Laws Ninth Edition: Current as of January 1, 2006; National Committee on Uniform Traffic Laws and Ordinances: Washington, DC, USA, 2006.
- Angel, E. Dynamic programming for noncausal problems. IEEE Trans. Autom. Control 1981, 26, 1041–1047. [Google Scholar] [CrossRef]
- Kalia, A.V.; Fabien, B.C. On Implementing Optimal Energy Management for EREV using Distance Constrained Adaptive Real-Time Dynamic Programming. Electronics 2020, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Bellman, R. Dynamic programming. Science 1966, 153, 34–37. [Google Scholar] [CrossRef]
- Sundstrom, O.; Guzzella, L. A generic dynamic programming Matlab function. In Proceedings of the IEEE Control Applications, (CCA) & Intelligent Control, (ISIC), St. Petersburg, Russia, 8–10 July 2009; pp. 1625–1630. [Google Scholar]
- Walker, K.; Samadi, B.; Huang, M.; Gerhard, J.; Butts, K.; Kolmanovsky, I. Design Environment for Nonlinear Model Predictive Control; Technical Report; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2016. [Google Scholar]
- Liao-McPherson, D.; Huang, M.; Kolmanovsky, I. A regularized and smoothed fischer–burmeister method for quadratic programming with applications to model predictive control. IEEE Trans. Autom. Control 2018, 64, 2937–2944. [Google Scholar] [CrossRef] [Green Version]
- Cagienard, R.; Grieder, P.; Kerrigan, E.C.; Morari, M. Move blocking strategies in receding horizon control. J. Process Control 2007, 17, 563–570. [Google Scholar] [CrossRef] [Green Version]
- Wipke, K.B.; Cuddy, M.R.; Burch, S.D. ADVISOR 2.1: A user-friendly advanced powertrain simulation using a combined backward/forward approach. IEEE Trans. Veh. Technol. 1999, 48, 1751–1761. [Google Scholar] [CrossRef]
Drive Cycle | Baseline | DP | Improvement (%) |
---|---|---|---|
WLTC | 17.55 | 14.96 | 14.76 |
US06 | 13.41 | 10.74 | 19.90 |
Without Warmstarting | With Warmstarting | |
---|---|---|
2.5336 s | 2.5210 s | |
2.5646 s | 2.5512 s |
Symbol | Description | Value (Unit) |
---|---|---|
m | Vehicle total mass | 1445 (kg) |
r | Wheel radius | 0.3166 (m) |
Vehicle frontal area | 2.06 (m) | |
Aerodynamic drag coefficient | 0.312 | |
Air density | 1.2 (kg/) | |
road inclination | 0 () | |
Rolling resistance coefficient | 0.0086 | |
Final drive ratio | 4.2 | |
Acceptable range of speed | (0, 150} (km/h) | |
Battery capacity | 55 (Ah) | |
Battery-depletion efficiency | 0.9 | |
Battery-recharge efficiency | 1.11 | |
max/min time headway | (s) | |
N | Prediction horizon | 10 |
Sampling time | 1 (s) | |
Control moves blocked | 3 |
WLTC | US06 | |
---|---|---|
Baseline | 17.55 | 13.41 |
Proposed | 15.64 (10.88%) | 11.42 (14.83%) |
Nominal MPC | 15.42 (12.14%) | 11.30 (15.73%) |
DP | 14.96 (14.76%) | 10.74 (19.90%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, K.; Nguyen, T.W.; Nam, K. Battery Energy Management of Autonomous Electric Vehicles Using Computationally Inexpensive Model Predictive Control. Electronics 2020, 9, 1277. https://doi.org/10.3390/electronics9081277
Han K, Nguyen TW, Nam K. Battery Energy Management of Autonomous Electric Vehicles Using Computationally Inexpensive Model Predictive Control. Electronics. 2020; 9(8):1277. https://doi.org/10.3390/electronics9081277
Chicago/Turabian StyleHan, Kyoungseok, Tam W. Nguyen, and Kanghyun Nam. 2020. "Battery Energy Management of Autonomous Electric Vehicles Using Computationally Inexpensive Model Predictive Control" Electronics 9, no. 8: 1277. https://doi.org/10.3390/electronics9081277
APA StyleHan, K., Nguyen, T. W., & Nam, K. (2020). Battery Energy Management of Autonomous Electric Vehicles Using Computationally Inexpensive Model Predictive Control. Electronics, 9(8), 1277. https://doi.org/10.3390/electronics9081277