State of Health Estimation for Lithium-Ion Batteries Based on the Constant Current–Constant Voltage Charging Curve
Abstract
:1. Introduction
1.1. Review of Estimation Approaches
1.2. Contribution and Organization
- (1)
- A new SOH estimation method for lithium-ion batteries is proposed, the LS-SVR model only needs some feature samples of battery charging curve and can work efficiently, which does not depended on ECM, complex mathematical calculations and time-consuming parameter tuning.
- (2)
- Based on the battery charging curve in the constant current and constant voltage (CC–CV) phase, the feature samples in the degradation process can be easily obtained. This method for feature acquisition is efficient and convenient in engineering applications.
2. Related Work
2.1. Problem Formulation of SOH
2.2. The Constant Current and Constant Voltage Test
3. Modeling and Methodology
3.1. Feature Construction
- (1)
- F1 is the cycle number, indicating the number of cycles of battery charge and discharge. The battery SOH and the cycle life are relevant for the batteries in this case. To develop an accurate battery SOH estimation method, the cycle number is considered as a feature variable.
- (2)
- F2 is the duration time of the CC phase, and the charging time in the CC phase decreases as the battery cycle number increases. The duration time can show how much battery capacity can be charged in the CC phase, which denotes the battery polarization phenomenon.
- (3)
- F3 is the duration time of the CV phase, it is employed to eliminate the polarization effect caused by CC phase to ensure the battery can be fully charged. The longer the CV phase duration is, the more difficult the lithium intercalation process will be.
- (4)
- F4 is the duration time of the CC phase at 3.9 V, F5 is the duration time of the CC phase at 4.0 V, F6 is the duration time of the CC phase at 4.1 V.
3.2. Features Extraction
- Step 1.
- For a given data set, determine the reference sequence , where ; and comparative sequence , here ;
- Step 2.
- Data normalization;
- Step 3.
- Compute the relational coefficients:
- Step 4.
- Compute the relational grade :
3.3. SOH Estimation by LS-SVR
3.4. Hyperparametric Optimization
4. Analysis of Experimental
4.1. Data Description
4.2. Model Training
4.3. Performance Metrics
4.4. Model Validation
5. Discussion
5.1. The Influence of the Kernel Function on the Estimation Model
5.2. The Influence of the Feature Variables on the Estimation Model
5.3. Performance Comparison
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Onat, N.C.; Aboushaqrah, N.N.M.; Kucukvar, M.; Tarlochan, F.; Hamouda, A.M. From sustainability assessment to sustainability management for policy development: The case for electric vehicles. Energy Convers. Manag. 2020, 216, 1–16. [Google Scholar]
- Un-Noor, F.; Padmanaban, S.; Mihet-Popa, L.; Mollah, M.N.; Holm-Nielsen, J.B. A Comprehensive Study of Key Electric Vehicle (EV) Components, technologies, challenges, impacts, and future direction of development. Energies 2017, 10, 1217. [Google Scholar] [CrossRef] [Green Version]
- Darabi, Z.; Ferdowsi, M. Impact of Plug-In Hybrid Electric Vehicles on Electricity Demand Profile. Power Syst. 2012, 53, 319–349. [Google Scholar]
- Bilgin, B.; Magne, P.; Malysz, P.; Yang, Y.; Pantelic, V.; Preindl, M.; Korobkine, A.; Jiang, W.; Lawford, M.; Emadi, A. Making the Case for Electrified Transportation. IEEE Trans. Transp. Electrif. 2015, 1, 4–17. [Google Scholar] [CrossRef]
- Lipu, M.S.H.; Hannan, M.; Hussain, A.; Hoque, M.; Ker, P.J.; Saad, M.; Ayob, A. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. J. Clean. Prod. 2018, 205, 115–133. [Google Scholar] [CrossRef]
- Sun, X.; Li, Z.; Wang, X.; Li, C. Technology Development of Electric Vehicles: A Review. Energies 2019, 13, 90. [Google Scholar] [CrossRef] [Green Version]
- Karavas, C.-S.; Arvanitis, K.; Papadakis, G. A game theory approach to multi-agent decentralized energy management of autonomous polygeneration microgrids. Energies 2017, 10, 1756. [Google Scholar] [CrossRef] [Green Version]
- Hittinger, E.; Wiley, T.; Kluza, J.; Whitacre, J. Evaluating the value of batteries in microgrid electricity systems using an improved Energy Systems Model. Energy Convers. Manag. 2015, 89, 458–472. [Google Scholar] [CrossRef] [Green Version]
- Sung, W.; Lee, J. Implementation of SOH Estimator in Automotive BMSs Using Recursive Least-Squares. Electronics 2019, 8, 1237. [Google Scholar] [CrossRef] [Green Version]
- Yi, W.; Youren, W.; Winco, K.C.Y.; Michael, P. Ultrasonic Health Monitoring of Lithium-Ion Batteries. Electronics 2019, 8, 751. [Google Scholar]
- Guha, A.; Patra, A. State of Health Estimation of Lithium-Ion Batteries Using Capacity Fade and Internal Resistance Growth Models. IEEE Trans. Transp. Electrif. 2018, 4, 135–146. [Google Scholar] [CrossRef]
- Bian, X.; Liu, L.; Yan, J.; Zou, Z.; Zhao, R. An open circuit voltage-based model for state-of-health estimation of lithium-ion batteries: Model development and validation. J. Power Sources 2020, 448, 227401. [Google Scholar] [CrossRef]
- Matteo, G.; Lucio, C.; Corrado, G.; Stefano, C.; Aldo, D.C. Performance Analysis and SOH (State of Health) Evaluation of Lithium Polymer Batteries Through Electrochemical Impedance Spectroscopy. Energy 2015, 89, 678–686. [Google Scholar]
- Wassiliadis, N.; Adermann, J.; Frericks, A.; Pak, M.; Reiter, C.; Lohmann, B.; Lienkamp, M. Revisiting the dual extended Kalman filter for battery state-of-charge and state-of-health estimation: A use-case life cycle analysis. J. Energy Storage 2018, 19, 73–87. [Google Scholar] [CrossRef]
- Shi, E.; Xia, F.; Peng, D.; Li, L.; Wang, X.; Yu, B. State-of-health estimation for lithium battery in electric vehicles based on improved unscented particle filter. J. Renew. Sustain. Energy 2019, 11, 024101. [Google Scholar] [CrossRef]
- Feng, Y.; Xue, C.; Han, Q.-L.; Han, F.; Du, J. Robust Estimation for State-of-Charge and State-of-Health of Lithium-Ion Batteries Using Integral-Type Terminal Sliding-Mode Observers. IEEE Trans. Ind. Electron. 2020, 67, 4013–4023. [Google Scholar] [CrossRef]
- Li, Y.; Abdel-Monem, M.; Gopalakrishnan, R.; Berecibar, M.; Nanini-Maury, E.; Omar, N.; Bossche, P.V.D.; Van Mierlo, J. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter. J. Power Sources 2018, 373, 40–53. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, X.; Pan, R.; Wang, Y.; Chen, Z. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. J. Power Sources 2018, 384, 387–395. [Google Scholar] [CrossRef]
- Guo, P.; Cheng, Z.; Yang, L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction. J. Power Sources 2019, 412, 442–450. [Google Scholar] [CrossRef]
- Cai, L.; Meng, J.; Stroe, D.-I.; Luo, G.; Teodorescu, R. An evolutionary framework for lithium-ion battery state of health estimation. J. Power Sources 2019, 412, 615–622. [Google Scholar] [CrossRef]
- Dai, H.; Zhao, G.; Lin, M.; Wu, J.; Zheng, G. A novel estimation method for the state of health of lithium-ion battery using prior knowledge-based neural network and markov chain. IEEE Trans. Ind. Electron. 2019, 66, 7706–7716. [Google Scholar] [CrossRef]
- Song, Z.; Wu, X.; Li, X.; Sun, J.; Hofmann, H.; Hou, J. Current Profile Optimization for Combined State of Charge and State of Health Estimation of Lithium Ion Battery Based on Cramer–Rao Bound Analysis. IEEE Trans. Power Electron. 2018, 34, 7067–7078. [Google Scholar] [CrossRef]
- Yang, Q.; Xu, J.; Li, X.; Xu, D.; Cao, B. State-of-health estimation of lithium-ion battery based on fractional impedance model and interval capacity. Int. J. Electr. Power Energy Syst. 2020, 119, 105883. [Google Scholar] [CrossRef]
- Tosun, N. Determination of Optimum Parameters for Multi-Performance Characteristics in Drilling by Using Grey Relational Analysis. Int. J. Adv. Manuf. Technol. 2005, 28, 450–455. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Johan, A.K.S.; Tony, V.G.; Jos, D.B.; Bart, D.M.; Joos, V. Least Squares Support Vector Machines; World Scientific: Singapore, 2002. [Google Scholar]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection; International Joint Conference on Artificial Intelligence: San Francisco, CA, USA, 1995; Volume 2, pp. 1137–1143. [Google Scholar]
- NASA Ames Prognostics Data Repository. Available online: https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-data-repository/ (accessed on 8 June 2020).
- Matlab 2015. Available online: https://www.mathworks.com/products/matlab.html (accessed on 8 June 2020).
- LSSVMLab. Available online: http://www.esat.kuleuven.be/sista/lssvmlab (accessed on 8 June 2020).
- Olivares, B.E.; Munoz, M.A.C.; Orchard, M.; Silva, J.F. Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena. IEEE Trans. Instrum. Meas. 2012, 62, 364–376. [Google Scholar] [CrossRef]
Features | F1 | F2 | F3 | F4 | F5 | F6 |
---|---|---|---|---|---|---|
GRA | 0.5903 | 0.8952 | 0.5959 | 0.8930 | 0.9013 | 0.9119 |
Kernel Function | |
Linear Kernel | |
Polynomial Kernel | |
Radial Basis Function |
Battery No. | Voltage Upper | Voltage Lower | Discharge Current |
---|---|---|---|
No. 5 | 4.2 | 2.7 | 2 |
No. 6 | 4.2 | 2.5 | 2 |
No. 7 | 4.2 | 2.2 | 2 |
Kernel Function | The Optimal Parameters | Validation Errors |
---|---|---|
Polynomial Kernel | C = 100, d = 6, p = 2 | 1.26% |
Kernel | Test Case | RMSE | MAE | MAPE | R2 (%) | Error (%) |
---|---|---|---|---|---|---|
Polynomial kernel | No. 5 | 1.26 | 0.89 | 0.53 | 99.58 | [−1.48 2.25] |
No. 6 | 1.36 | 1.08 | 0.65 | 99.73 | [−1.83 1.09] | |
No. 7 | 0.95 | 0.7 | 0.41 | 99.67 | [−1.4 1.39] | |
No. 5, 6, 7 | 1.19 | 0.89 | 0.53 | 99.66 | [−1.83 2.25] |
Kernel | Test Case | RMSE | MAE | MAPE | R2 (%) | Error (%) |
---|---|---|---|---|---|---|
Linear kernel | No. 5 | 2.25 | 1.87 | 1.17 | 98.66 | [−1.35 2.72] |
No. 6 | 4.43 | 2.8 | 1.67 | 97.13 | [−9.25 1.59] | |
No. 7 | 2.17 | 1.18 | 0.69 | 98.29 | [−5.83 0.94] | |
No. 5, 6, 7 | 2.95 | 1.95 | 1.1767 | 98.0267 | [−9.25 2.72] | |
Radial Basis Function | No. 5 | 1.43 | 0.98 | 0.59 | 99.46 | [−0.92 2.8] |
No. 6 | 2.06 | 1.53 | 0.92 | 99.38 | [−3.37 1.2] | |
No. 7 | 0.87 | 0.65 | 0.38 | 99.72 | [−1.34 0.79] | |
No. 5, 6, 7 | 1.4533 | 1.0533 | 0.63 | 99.52 | [−3.37 2.8] |
Minus Features | Test Case | RMSE | MAE | MAPE | R2 | Error |
---|---|---|---|---|---|---|
F1 | Test 1 | 3.03 | 2.31 | 1.45 | 97.61 | [−5.99 3.83] |
Test 2 | 4.23 | 2.27 | 1.36 | 97.38 | [−9.88 3.06] | |
Test 3 | 2.72 | 1.83 | 1.12 | 97.31 | [−6.24 2.69] | |
Test 1, 2, 3 | 3.33 | 2.14 | 1.31 | 97.43 | [−9.88 3.83] | |
F2 | Test 1 | 2.22 | 1.38 | 0.82 | 98.71 | [−5.42 2.04] |
Test 2 | 3.61 | 1.72 | 1.01 | 98.08 | [−8.66 2.8] | |
Test 3 | 2.18 | 1.09 | 0.63 | 98.27 | [−6.09 1.82] | |
Test 1, 2, 3 | 2.67 | 1.39 | 0.82 | 98.35 | [−8.66 2.8] | |
F3 | Test 1 | 2.20 | 1.36 | 0.80 | 98.74 | [−5.23 2.56] |
Test 2 | 3.58 | 1.79 | 1.04 | 98.12 | [−8.54 2.7] | |
Test 3 | 2.08 | 0.99 | 0.58 | 98.42 | [−6.01 1.63] | |
Test 1, 2, 3 | 2.62 | 1.38 | 0.81 | 98.43 | [−8.54 2.7] | |
F4 | Test 1 | 2.25 | 1.57 | 0.95 | 98.69 | [−5.19 1.96] |
Test 2 | 3.98 | 2.27 | 1.33 | 97.67 | [−8.31 2.31] | |
Test 3 | 2.36 | 1.26 | 0.72 | 97.97 | [−5.93 1.96] | |
Test 1, 2, 3 | 2.86 | 1.7 | 1.0 | 98.11 | [−8.31 2.31] | |
F5 | Test 1 | 2.46 | 1.64 | 0.99 | 98.43 | [−5.07 2.82] |
Test 2 | 3.80 | 2.05 | 1.24 | 97.87 | [−8.08 2.32] | |
Test 3 | 2.18 | 1.08 | 0.62 | 98.27 | [−5.83 1.82] | |
Test 1, 2, 3 | 2.81 | 1.59 | 0.95 | 98.19 | [−8.08 2.82] | |
F6 | Test 1 | 3.09 | 2.39 | 1.44 | 97.51 | [−4.58 4.79] |
Test 2 | 4.07 | 2.43 | 1.46 | 97.57 | [−8.09 2.24] | |
Test 3 | 2.33 | 1.43 | 0.84 | 98.02 | [−5.84 2.32] | |
Test 1, 2, 3 | 3.16 | 2.08 | 1.25 | 97.7 | [−8.09 4.79] |
Method | Feature Construction | Test Set | Aging Type | Errors |
---|---|---|---|---|
GPR [12] | Charge/discharge curve (CC–CV) | NASA data | Cycle aged | RMSE: 0.78–3.45% |
RVM [13] | Charge/discharge curve (CC–CV) | NASA data | Cycle aged | RMSE: 1.02–4.22% |
LR [14] | Incremental capacity curve | Battery aging test | Cycle aged | Mean Errors: 0.81–1.48% |
SVR-GA [15] | Voltage response of the pulse test | Battery aging test | Calendar aged | RMSE: 1.91–1.31% |
LS-SVR (proposed) | Charge/discharge curve (CC–CV) | NASA data | Cycle aged | RMSE: 0.95–1.36% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, B.; Xiao, B.; Liu, L. State of Health Estimation for Lithium-Ion Batteries Based on the Constant Current–Constant Voltage Charging Curve. Electronics 2020, 9, 1279. https://doi.org/10.3390/electronics9081279
Xiao B, Xiao B, Liu L. State of Health Estimation for Lithium-Ion Batteries Based on the Constant Current–Constant Voltage Charging Curve. Electronics. 2020; 9(8):1279. https://doi.org/10.3390/electronics9081279
Chicago/Turabian StyleXiao, Bin, Bing Xiao, and Luoshi Liu. 2020. "State of Health Estimation for Lithium-Ion Batteries Based on the Constant Current–Constant Voltage Charging Curve" Electronics 9, no. 8: 1279. https://doi.org/10.3390/electronics9081279
APA StyleXiao, B., Xiao, B., & Liu, L. (2020). State of Health Estimation for Lithium-Ion Batteries Based on the Constant Current–Constant Voltage Charging Curve. Electronics, 9(8), 1279. https://doi.org/10.3390/electronics9081279