Dynamic Hippocampal and Prefrontal Contributions to Memory Processes and Representations Blur the Boundaries of Traditional Cognitive Domains
Abstract
:1. Introduction
2. Patient Lesion Studies Initially Identified Distinct Contributions of Hippocampus and PFC to Different Domains of Cognition
3. Hippocampal Contributions Extend beyond the Historically Circumscribed Domain of Memory
4. Relational Memory Theory Describes Both Memory Processes and Representations Supported by the Hippocampus
5. PFC Contributions Extend beyond Historically Circumscribed Domains and Include Memory
6. Hippocampal–PFC Network Interactions Disregard the Boundaries of Traditional Cognitive Domains
7. Theories of Hippocampal–PFC Networks Must Account for the Dynamic Interaction of Both Processes and Representations
8. Conclusions and Future Directions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cohen, N.J.; Eichenbaum, H. Memory, Amnesia, and the Hippocampal System; MIT Press: Cambridge, MA, USA, 1993. [Google Scholar]
- Eichenbaum, H.; Cohen, N.J. From Conditioning to Conscious Recollection: Memory Systems of the Brain; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Squire, L.R. Memory systems of the brain: A brief history and current perspective. Neurobiol. Learn. Mem. 2004, 82, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.D.; Watson, P.D.; Duff, M.C.; Cohen, N.J. The role of the hippocampus in flexible cognition and social behavior. Front. Hum. Neurosci. 2014, 8, 742. [Google Scholar] [CrossRef] [PubMed]
- Domenech, P.; Koechlin, E. Executive control and decision-making in the prefrontal cortex. Curr. Opin. Behav. Sci. 2015, 1, 101–106. [Google Scholar] [CrossRef]
- Cohen, N.J.; Squire, L.R. Preserved learning and retention of pattern-analyzing skill in amnesia: Dissociation of knowing how and knowing that. Science 1980, 210, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Scoville, W.B.; Milner, B. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 1957, 20, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Milner, B.; Corkin, S.; Teuber, H.-L. Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of hm. Neuropsychologia 1968, 6, 215–234. [Google Scholar] [CrossRef]
- Harlow, J.M. Recovery from the passage of an iron bar through the head. Hist. Psychiatry 1993, 4, 274–281. [Google Scholar] [CrossRef]
- Bechara, A.; Damasio, A.R.; Damasio, H.; Anderson, S.W. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 1994, 50, 7–15. [Google Scholar] [CrossRef]
- Damasio, H.; Grabowski, T.; Frank, R.; Galaburda, A.M.; Damasio, A.R. The return of phineas gage: Clues about the brain from the skull of a famous patient. Science 1994, 264, 1102–1105. [Google Scholar] [CrossRef] [PubMed]
- Squire, L.R.; Zola-Morgan, S. The medial temporal lobe memory system. Science 1991, 253, 1380–1386. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.G.; Garrud, P.; Rawlins, J.N.; O’Keefe, J. Place navigation impaired in rats with hippocampal lesions. Nature 1982, 297, 681–683. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, J.; Nadel, L. The Hippocampus as a Cognitive Map; Clarendon Press: Oxford, UK, 1978. [Google Scholar]
- Eichenbaum, H.; Cohen, N.J. Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron 2014, 83, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Duff, M.C.; Kurczek, J.; Rubin, R.; Cohen, N.J.; Tranel, D. Hippocampal amnesia disrupts creative thinking. Hippocampus 2013, 23, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Shimamura, A.P. Episodic retrieval and the cortical binding of relational activity. Cognit. Affect. Behav. Neurosci. 2011, 11, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Konkel, A.; Cohen, N.J. Relational memory and the hippocampus: Representations and methods. Front. Neurosci. 2009, 3, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Davachi, L. Item, context and relational episodic encoding in humans. Curr. Opin. Neurobiol. 2006, 16, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Prince, S.E.; Daselaar, S.M.; Cabeza, R. Neural correlates of relational memory: Successful encoding and retrieval of semantic and perceptual associations. J. Neurosci. 2005, 25, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Kumaran, D.; Maguire, E.A. The human hippocampus: Cognitive maps or relational memory? J. Neurosci. Off. J. Soc. Neurosci. 2005, 25, 7254–7259. [Google Scholar] [CrossRef] [PubMed]
- Giovanello, K.S.; Schnyer, D.M.; Verfaellie, M. A critical role for the anterior hippocampus in relational memory: Evidence from an fmri study comparing associative and item recognition. Hippocampus 2004, 14, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Duff, M.C.; Hengst, J.A.; Tranel, D.; Cohen, N.J. Hippocampal amnesia disrupts verbal play and the creative use of language in social interaction. Aphasiology 2009, 23, 926–939. [Google Scholar] [CrossRef] [PubMed]
- Hannula, D.E.; Tranel, D.; Allen, J.S.; Kirchhoff, B.A.; Nickel, A.E.; Cohen, N.J. Memory for items and relationships among items embedded in realistic scenes: Disproportionate relational memory impairments in amnesia. Neuropsychology 2015, 29, 126–138. [Google Scholar] [CrossRef] [PubMed]
- Ryan, J.D.; Althoff, R.R.; Whitlow, S.; Cohen, N.J. Amnesia is a deficit in relational memory. Psychol. Sci. 2000, 11, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Croft, K.E.; Duff, M.C.; Kovach, C.K.; Anderson, S.W.; Adolphs, R.; Tranel, D. Detestable or marvelous? Neuroanatomical correlates of character judgments. Neuropsychologia 2010, 48, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- Davidson, P.S.; Drouin, H.; Kwan, D.; Moscovitch, M.; Rosenbaum, R.S. Memory as social glue: Close interpersonal relationships in amnesic patients. Front. Psychol. 2012, 3, 531. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, L.J.; Uncapher, M.R.; Rugg, M.D. Dissociation of the neural correlates of visual and auditory contextual encoding. Neuropsychologia 2010, 48, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.W.; Eichenbaum, H. Time and space in the hippocampus. Brain Res. 2015, 1621, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Howard, M.W.; Eichenbaum, H. The hippocampus, time, and memory across scales. J. Exp. Psychol. Gen. 2013, 142, 1211–1230. [Google Scholar] [CrossRef] [PubMed]
- Ferbinteanu, J.; Shirvalkar, P.; Shapiro, M.L. Memory modulates journey-dependent coding in the rat hippocampus. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 9135–9146. [Google Scholar] [CrossRef] [PubMed]
- Floresco, S.B.; Seamans, J.K.; Phillips, A.G. Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J. Neurosci. Off. J. Soc. Neurosci. 1997, 17, 1880–1890. [Google Scholar]
- Voss, J.L.; Cohen, N.J. Hippocampal-cortical contributions to strategic exploration during perceptual discrimination. Hippocampus 2017, 27, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Voss, J.L.; Gonsalves, B.D.; Federmeier, K.D.; Tranel, D.; Cohen, N.J. Hippocampal brain-network coordination during volitional exploratory behavior enhances learning. Nat. Neurosci. 2011, 14, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Voss, J.L.; Warren, D.E.; Gonsalves, B.D.; Federmeier, K.D.; Tranel, D.; Cohen, N.J. Spontaneous revisitation during visual exploration as a link among strategic behavior, learning, and the hippocampus. Proc. Natl. Acad. Sci. USA 2011, 108, E402–E409. [Google Scholar] [CrossRef] [PubMed]
- Yee, L.T.; Warren, D.E.; Voss, J.L.; Duff, M.C.; Tranel, D.; Cohen, N.J. The hippocampus uses information just encountered to guide efficient ongoing behavior. Hippocampus 2014, 24, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Amsel, A. A simple test of the vicarious trial-and-error hypothesis of hippocampal function. Proc. Natl. Acad. Sci. USA 1995, 92, 5506–5509. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Xu, X.; Gonzalez-Lima, F. Vicarious trial-and-error behavior and hippocampal cytochrome oxidase activity during y-maze discrimination learning in the rat. Int. J. Neurosci. 2006, 116, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Faraco, C.C.; Unsworth, N.; Langley, J.; Terry, D.; Li, K.; Zhang, D.; Liu, T.; Miller, L.S. Complex span tasks and hippocampal recruitment during working memory. NeuroImage 2011, 55, 773–787. [Google Scholar] [CrossRef] [PubMed]
- Jeneson, A.; Mauldin, K.N.; Hopkins, R.O.; Squire, L.R. The role of the hippocampus in retaining relational information across short delays: The importance of memory load. Learn. Mem. 2011, 18, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Jeneson, A.; Squire, L.R. Working memory, long-term memory, and medial temporal lobe function. Learn. Mem. 2012, 19, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Libby, L.A.; Hannula, D.E.; Ranganath, C. Medial temporal lobe coding of item and spatial information during relational binding in working memory. J. Neurosci. Off. J. Soc. Neurosci. 2014, 34, 14233–14242. [Google Scholar] [CrossRef] [PubMed]
- Olson, I.R.; Page, K.; Moore, K.S.; Chatterjee, A.; Verfaellie, M. Working memory for conjunctions relies on the medial temporal lobe. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 4596–4601. [Google Scholar] [CrossRef] [PubMed]
- Olson, I.R.; Moore, K.S.; Stark, M.; Chatterjee, A. Visual working memory is impaired when the medial temporal lobe is damaged. J. Cognit. Neurosci. 2006, 18, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.D.; Voss, J.L.; Warren, D.E.; Tranel, D.; Cohen, N.J. Spatial reconstruction by patients with hippocampal damage is dominated by relational memory errors. Hippocampus 2013, 23, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.E.; Duff, M.C.; Tranel, D.; Cohen, N.J. Observing degradation of visual representations over short intervals when medial temporal lobe is damaged. J. Cognit. Neurosci. 2011, 23, 3862–3873. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.E.; Duff, M.C.; Jensen, U.; Tranel, D.; Cohen, N.J. Hiding in plain view: Lesions of the medial temporal lobe impair online representation. Hippocampus 2012, 22, 1577–1588. [Google Scholar] [CrossRef] [PubMed]
- Duff, M.C.; Hengst, J.A.; Tranel, D.; Cohen, N.J. Talking across time: Using reported speech as a communicative resource in amnesia. Aphasiology 2007, 21, 702716. [Google Scholar] [CrossRef] [PubMed]
- Duff, M.C.; Brown-Schmidt, S. The hippocampus and the flexible use and processing of language. Front. Hum. Neurosci. 2012, 6, 69. [Google Scholar] [CrossRef] [PubMed]
- Duff, M.C.; Hengst, J.A.; Tengshe, C.; Krema, A.; Tranel, D.; Cohen, N.J. Hippocampal amnesia disrupts the flexible use of procedural discourse in social interaction. Aphasiology 2008, 22, 866–880. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.D.; Brown-Schmidt, S.; Duff, M.C.; Tranel, D.; Cohen, N.J. How do I remember that I know you know that I know? Psychol. Sci. 2011, 22, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Hassabis, D.; Kumaran, D.; Maguire, E.A. Using imagination to understand the neural basis of episodic memory. J. Neurosci. Off. J. Soc. Neurosci. 2007, 27, 14365–14374. [Google Scholar] [CrossRef] [PubMed]
- Hassabis, D.; Kumaran, D.; Vann, S.D.; Maguire, E.A. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl. Acad. Sci. USA 2007, 104, 1726–1731. [Google Scholar] [CrossRef] [PubMed]
- Kwan, D.; Carson, N.; Addis, D.R.; Rosenbaum, R.S. Deficits in past remembering extend to future imagining in a case of developmental amnesia. Neuropsychologia 2010, 48, 3179–3186. [Google Scholar] [CrossRef] [PubMed]
- Race, E.; Keane, M.M.; Verfaellie, M. Living in the moment: Patients with MTL amnesia can richly describe the present despite deficits in past and future thought. Cortex J. Devot. Stud. Nerv. Syst. Behav. 2013, 49, 1764–1766. [Google Scholar] [CrossRef]
- Race, E.; Keane, M.M.; Verfaellie, M. Losing sight of the future: Impaired semantic prospection following medial temporal lobe lesions. Hippocampus 2013, 23, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.E.; Kurczek, J.; Duff, M.C. What relates newspaper, definite, and clothing? An article describing deficits in convergent problem solving and creativity following hippocampal damage. Hippocampus 2016, 26, 835–840. [Google Scholar] [CrossRef]
- Shamay-Tsoory, S.G.; Tomer, R.; Goldsher, D.; Berger, B.D.; Aharon-Peretz, J. Impairment in cognitive and affective empathy in patients with brain lesions: Anatomical and cognitive correlates. J. Clin. Exp. Neuropsychol. 2004, 26, 1113–1127. [Google Scholar] [CrossRef] [PubMed]
- Beadle, J.N.; Tranel, D.; Cohen, N.J.; Duff, M.C. Empathy in hippocampal amnesia. Front. Psychol. 2013, 4, 69. [Google Scholar] [CrossRef] [PubMed]
- Coronel, J.C.; Duff, M.C.; Warren, D.E.; Federmeier, K.D.; Gonsalves, B.D.; Tranel, D.; Cohen, N.J. Remembering and voting: Theory and evidence from amnesic patients. Am. J. Polit. Sci. 2012, 56, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Duff, M.C.; Denburg, N.L.; Cohen, N.J.; Bechara, A.; Tranel, D. Declarative memory is critical for sustained advantageous complex decision-making. Neuropsychologia 2009, 47, 1686–1693. [Google Scholar] [CrossRef] [PubMed]
- Palombo, D.J.; Keane, M.M.; Verfaellie, M. How does the hippocampus shape decisions? Neurobiol. Learn. Mem. 2015, 125, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Palombo, D.J.; Keane, M.M.; Verfaellie, M. How do lesion studies elucidate the role of the hippocampus in intertemporal choice? Hippocampus 2015, 25, 407–408. [Google Scholar] [CrossRef] [PubMed]
- Palombo, D.J.; Keane, M.M.; Verfaellie, M. The medial temporal lobes are critical for reward-based decision making under conditions that promote episodic future thinking. Hippocampus 2015, 25, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Hartley, T.; Bird, C.M.; Chan, D.; Cipolotti, L.; Husain, M.; Vargha-Khadem, F.; Burgess, N. The hippocampus is required for short-term topographical memory in humans. Hippocampus 2007, 17, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Maguire, E.A.; Woollett, K.; Spiers, H.J. London taxi drivers and bus drivers: A structural mri and neuropsychological analysis. Hippocampus 2006, 16, 1091–1101. [Google Scholar] [CrossRef] [PubMed]
- Spiers, H.J.; Maguire, E.A. Thoughts, behaviour, and brain dynamics during navigation in the real world. NeuroImage 2006, 31, 1826–1840. [Google Scholar] [CrossRef] [PubMed]
- Klooster, N.B.; Duff, M.C. Remote semantic memory is impoverished in hippocampal amnesia. Neuropsychologia 2015, 79, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Moscovitch, M.; Nadel, L.; Winocur, G.; Gilboa, A.; Rosenbaum, R.S. The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr. Opin. Neurobiol. 2006, 16, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.N.; Squire, L.R. Medial temporal lobe activity during retrieval of semantic memory is related to the age of the memory. J. Neurosci. Off. J. Soc. Neurosci. 2009, 29, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Frankland, P.W.; Bontempi, B. The organization of recent and remote memories. Nat. Rev. Neurosci. 2005, 6, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Adolphs, R. Human lesion studies in the 21st century. Neuron 2016, 90, 1151–1153. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, R.S.; Gilboa, A.; Moscovitch, M. Case studies continue to illuminate the cognitive neuroscience of memory. Ann. N. Y. Acad. Sci. 2014, 1316, 105–133. [Google Scholar] [CrossRef] [PubMed]
- Squire, L.R.; Zola, S.M. Structure and function of declarative and nondeclarative memory systems. Proc. Natl. Acad. Sci. USA 1996, 93, 13515–13522. [Google Scholar] [CrossRef] [PubMed]
- Badre, D.; D’Esposito, M. Is the rostro-caudal axis of the frontal lobe hierarchical? Nat. Rev. Neurosci. 2009, 10, 659–669. [Google Scholar] [CrossRef] [PubMed]
- West, R.L. An application of prefrontal cortex function theory to cognitive aging. Psychol. Bull. 1996, 120, 272–292. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.K.; Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 2001, 24, 167–202. [Google Scholar] [CrossRef] [PubMed]
- D’Esposito, M.; Postle, B.R. The cognitive neuroscience of working memory. Annu. Rev. Psychol. 2015, 66, 115–142. [Google Scholar] [CrossRef] [PubMed]
- Shamay-Tsoory, S.G.; Adler, N.; Aharon-Peretz, J.; Perry, D.; Mayseless, N. The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia 2011, 49, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Abraham, A.; Pieritz, K.; Thybusch, K.; Rutter, B.; Kroger, S.; Schweckendiek, J.; Stark, R.; Windmann, S.; Hermann, C. Creativity and the brain: Uncovering the neural signature of conceptual expansion. Neuropsychologia 2012, 50, 1906–1917. [Google Scholar] [CrossRef] [PubMed]
- Hampton, A.N.; Bossaerts, P.; O’doherty, J.P. The role of the ventromedial prefrontal cortex in abstract state-based inference during decision making in humans. J. Neurosci. 2006, 26, 8360–8367. [Google Scholar] [CrossRef] [PubMed]
- Badre, D.; Kayser, A.S.; D’Esposito, M. Frontal cortex and the discovery of abstract action rules. Neuron 2010, 66, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.; Goldman-Rakic, P.S. Segregation of working memory functions within the dorsolateral prefrontal cortex. Exp. Brain Res. 2000, 133, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.D.; Perlstein, W.M.; Braver, T.S.; Nystrom, L.E.; Noll, D.C.; Jonides, J.; Smith, E.E. Temporal dynamics of brain activation during a working memory task. Nature 1997, 386, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Braver, T.S.; Cohen, J.D. Working memory, cognitive control, and the prefrontal cortex: Computational and empirical studies. Cognit. Process. 2001, 2, 2555. [Google Scholar]
- Fuster, J.M. Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory. J. Neurophysiol. 1973, 36, 61–78. [Google Scholar] [PubMed]
- Baldo, J.V.; Shimamura, A.P. Spatial and color working memory in patients with lateral prefrontal cortex lesions. Psychobiology 2000, 28, 156–167. [Google Scholar]
- Preston, A.R.; Eichenbaum, H. Interplay of hippocampus and prefrontal cortex in memory. Curr. Biol. 2013, 23, R764–R773. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; Wheeler, M.E. The cognitive neuroscience of remembering. Nat. Rev. Neurosci. 2001, 2, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Buckner, R.L.; Wheeler, M.E.; Sheridan, M.A. Encoding processes during retrieval tasks. J. Cognit. Neurosci. 2001, 13, 406–415. [Google Scholar] [CrossRef]
- Henson, R.N.; Shallice, T.; Dolan, R.J. Right prefrontal cortex and episodic memory retrieval: A functional mri test of the monitoring hypothesis. Brain 1999, 122 Pt 7, 1367–1381. [Google Scholar] [CrossRef] [PubMed]
- Badre, D.; Poldrack, R.A.; Pare-Blagoev, E.J.; Insler, R.Z.; Wagner, A.D. Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron 2005, 47, 907–918. [Google Scholar] [CrossRef] [PubMed]
- Badre, D.; Wagner, A.D. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 2007, 45, 2883–2901. [Google Scholar] [CrossRef] [PubMed]
- Dulas, M.R.; Duarte, A. Age-related changes in overcoming proactive interference in associative memory: The role of pfc-mediated executive control processes at retrieval. Neuroimage 2016, 132, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Shimamura, A.P.; Jurica, P.J.; Mangels, J.A.; Gershberg, F.B.; Knight, R.T. Susceptibility to memory interference effects following frontal lobe damage: Findings from tests of paired-associate learning. J. Cognit. Neurosci. 1995, 7, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Rich, E.L.; Shapiro, M.L. Prelimbic/infralimbic inactivation impairs memory for multiple task switches, but not flexible selection of familiar tasks. J. Neurosci. Off. J. Soc. Neurosci. 2007, 27, 4747–4755. [Google Scholar] [CrossRef] [PubMed]
- Simons, J.S.; Spiers, H.J. Prefrontal and medial temporal lobe interactions in long-term memory. Nat. Rev. Neurosci. 2003, 4, 637–648. [Google Scholar] [CrossRef] [PubMed]
- Lepage, M.; Ghaffar, O.; Nyberg, L.; Tulving, E. Prefrontal cortex and episodic memory retrieval mode. Proc. Natl. Acad. Sci. USA 2000, 97, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Dulas, M.R.; Duarte, A. Aging affects the interaction between attentional control and source memory: An fmri study. J. Cognit. Neurosci. 2014, 26, 2653–2669. [Google Scholar] [CrossRef] [PubMed]
- Aron, A.R.; Robbins, T.W.; Poldrack, R.A. Inhibition and the right inferior frontal cortex. Trends Cognit. Sci. 2004, 8, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Blumenfeld, R.S.; Ranganath, C. Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Ranganath, C.; Cohen, M.X.; Dam, C.; D’Esposito, M. Inferior temporal, prefrontal, and hippocampal contributions to visual working memory maintenance and associative memory retrieval. J. Neurosci. Off. J. Soc. Neurosci. 2004, 24, 3917–3925. [Google Scholar] [CrossRef] [PubMed]
- Ranganath, C.; Johnson, M.K.; D’Esposito, M. Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia 2003, 41, 378–389. [Google Scholar] [CrossRef]
- Karlsson, M.P.; Frank, L.M. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 2009, 12, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Benchenane, K.; Peyrache, A.; Khamassi, M.; Tierney, P.L.; Gioanni, Y.; Battaglia, F.P.; Wiener, S.I. Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron 2010, 66, 921–936. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, M.D.; Poschel, B.; Cichon, N.; Hanganu-Opatz, I.L. Coupled oscillations mediate directed interactions between prefrontal cortex and hippocampus of the neonatal rat. Neuron 2011, 71, 332–347. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.Y.; Frank, L.M. Hippocampal-cortical interaction in decision making. Neurobiol. Learn. Mem. 2015, 117, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.; Bush, D.; Bonnefond, M.; Bandettini, P.A.; Barnes, G.R.; Doeller, C.F.; Burgess, N. Medial prefrontal theta phase coupling during spatial memory retrieval. Hippocampus 2014, 24, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, R.; King, J.; Koster, R.; Penny, W.D.; Burgess, N.; Friston, K.J. The neural representation of prospective choice during spatial planning and decisions. PLoS Biol. 2017, 15, e1002588. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Voss, J.L. Brain networks for exploration decisions utilizing distinct modeled information types during contextual learning. Neuron 2014, 82, 1171–1182. [Google Scholar] [CrossRef] [PubMed]
- Weilbacher, R.A.; Gluth, S. The interplay of hippocampus and ventromedial prefrontal cortex in memory-based decision making. Brain Sci. 2016, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Von Der Heide, R.J.; Skipper, L.M.; Klobusicky, E.; Olson, I.R. Dissecting the uncinate fasciculus: Disorders, controversies and a hypothesis. Brain 2013, 136, 1692–1707. [Google Scholar] [CrossRef] [PubMed]
- Schwarb, H.; Watson, P.D.; Campbell, K.; Shander, C.L.; Monti, J.M.; Cooke, G.E.; Wang, J.X.; Kramer, A.F.; Cohen, N.J. Competition and cooperation among relational memory representations. PLoS ONE 2015, 10, e0143832. [Google Scholar] [CrossRef] [PubMed]
- Schwarb, H.; Johnson, C.L.; Holtrop, J.L.; Wang, J.X.; Watson, P.D.; Voss, J.L.; Cohen, N.J. Structural and Functional Contributions to Context-Dependent Relational Memory. Presented at the Annual Meeting of the Society for Neuroscience, Chicago, IL, USA, 17–21 October 2015. [Google Scholar]
- Wood, J.N.; Grafman, J. Human prefrontal cortex: Processing and representational perspectives. Nat. Rev. Neurosci. 2003, 4, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Gazzaley, A.; Nobre, A.C. Top-down modulation: Bridging selective attention and working memory. Trends Cognit. Sci. 2012, 16, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Gazzaley, A.; Cooney, J.W.; McEvoy, K.; Knight, R.T.; D’Esposito, M. Top-down enhancement and suppression of the magnitude and speed of neural activity. J. Cognit. Neurosci. 2005, 17, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Gazzaley, A.; Rissman, J.; Cooney, J.; Rutman, A.; Seibert, T.; Clapp, W.; D’Esposito, M. Functional interactions between prefrontal and visual association cortex contribute to top-down modulation of visual processing. Cereb. Cortex 2007, 17 (Suppl. 1), i125–i135. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, B.A.; Bainbridge, W.A.; Chun, M.M. Neural reactivation reveals mechanisms for updating memory. J. Neurosci. 2012, 32, 3453–3461. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.E.; Jones, S.H.; Duff, M.C.; Tranel, D. False recall is reduced by damage to the ventromedial prefrontal cortex: Implications for understanding the neural correlates of schematic memory. J. Neurosci. 2014, 34, 7677–7682. [Google Scholar] [CrossRef] [PubMed]
- Hebscher, M.; Barkan-Abramski, M.; Goldsmith, M.; Aharon-Peretz, J.; Gilboa, A. Memory, decision-making, and the ventromedial prefrontal cortex (vmPFC): The roles of subcallosal and posterior orbitofrontal cortices in monitoring and control processes. Cereb. Cortex 2016, 26, 4590–4601. [Google Scholar] [CrossRef] [PubMed]
- Hebscher, M.; Gilboa, A. A boost of confidence: The role of the ventromedial prefrontal cortex in memory, decision-making, and schemas. Neuropsychologia 2016, 90, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Coutlee, C.G.; Huettel, S.A. The functional neuroanatomy of decision making: Prefrontal control of thought and action. Brain Res. 2012, 1428, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Zeithamova, D.; Maddox, W.T.; Schnyer, D.M. Dissociable prototype learning systems: Evidence from brain imaging and behavior. J. Neurosci. Off. J. Soc. Neurosci. 2008, 28, 13194–13201. [Google Scholar] [CrossRef] [PubMed]
- Van Kesteren, M.T.; Ruiter, D.J.; Fernandez, G.; Henson, R.N. How schema and novelty augment memory formation. Trends Neurosci. 2012, 35, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Cohen, N.J.; Voss, J.L. Covert rapid action-memory simulation (CRAMS): A hypothesis of hippocampal-prefrontal interactions for adaptive behavior. Neurobiol. Learn. Mem. 2015, 117, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Christoff, K.; Keramatian, K.; Gordon, A.M.; Smith, R.; Madler, B. Prefrontal organization of cognitive control according to levels of abstraction. Brain Res. 2009, 1286, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Spalding, K.N.; Jones, S.H.; Duff, M.C.; Tranel, D.; Warren, D.E. Investigating the neural correlates of schemas: Ventromedial prefrontal cortex is necessary for normal schematic influence on memory. J. Neurosci. Off. J. Soc. Neurosci. 2015, 35, 15746–15751. [Google Scholar] [CrossRef] [PubMed]
- Hazeltine, E.; Lightman, E.; Schwarb, H.; Schumacher, E.H. The boundaries of sequential modulations: Evidence for set-level control. J. Exp. Psychol. Hum. Percept. Perform. 2011, 37, 1898–1914. [Google Scholar] [CrossRef] [PubMed]
- Hazeltine, E.; Schumacher, E.H. Understanding central processes: The case against simple stimulus-response associations and for complex task representation. Psychol. Learn. Motiv. 2016, 64, 195–245. [Google Scholar]
- Schumacher, E.H.; Hazeltine, E. Hierarchical task representation: Task files and response selection. Curr. Dir. Psychol. Sci. 2016, 25, 449–454. [Google Scholar] [CrossRef]
- McClelland, J.L.; McNaughton, B.L.; O’Reilly, R.C. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 1995, 102, 419–457. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.A.; O’Reilly, R.C. Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychol. Rev. 2003, 110, 611–646. [Google Scholar] [CrossRef] [PubMed]
- Bridge, D.J.; Voss, J.L. Binding among select episodic elements is altered via active short-term retrieval. Learn. Mem. 2015, 22, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Schlichting, M.L.; Mumford, J.A.; Preston, A.R. Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nat. Commun. 2015, 6, 8151. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, V.E.; Moscovitch, M.; Melo Colella, B.; Gilboa, A. Schema representation in patients with ventromedial pfc lesions. J. Neurosci. 2014, 34, 12057–12070. [Google Scholar] [CrossRef] [PubMed]
- Badre, D.; D’Esposito, M. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J. Cognit. Neurosci. 2007, 19, 2082–2099. [Google Scholar] [CrossRef] [PubMed]
- Sreenivasan, K.K.; Curtis, C.E.; D’Esposito, M. Revisiting the role of persistent neural activity during working memory. Trends Cognit. Sci. 2014, 18, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.E.; Lee, D. Beyond working memory: The role of persistent activity in decision making. Trends Cognit. Sci. 2010, 14, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Curtis, C.E.; D’Esposito, M. Persistent activity in the prefrontal cortex during working memory. Trends Cognit. Sci. 2003, 7, 415–423. [Google Scholar] [CrossRef]
- Fletcher, P.C.; Henson, R.N. Frontal lobes and human memory: Insights from functional neuroimaging. Brain 2001, 124, 849–881. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, K.J.; Johnson, M.K. Source monitoring 15 years later: What have we learned from fmri about the neural mechanisms of source memory? Psychol. Bull. 2009, 135, 638–677. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.K.; Hashtroudi, S.; Lindsay, D.S. Source monitoring. Pschol. Rev. 1993, 114, 3–28. [Google Scholar] [CrossRef]
- Szatkowska, I.; Szymanska, O.; Grabowska, A. The role of the human ventromedial prefrontal cortex in memory for contextual information. Neurosci. Lett. 2004, 364, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Litt, A.; Plassmann, H.; Shiv, B.; Rangel, A. Dissociating valuation and saliency signals during decision-making. Cereb. Cortex 2011, 21, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Hare, T.A.; Camerer, C.F.; Rangel, A. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 2009, 324, 646–648. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, D.C.; Michelle McClelland, M.; Donovan, C.M. A hierarchy for relational reasoning in the prefrontal cortex. Cortex 2011, 47, 588–597. [Google Scholar] [CrossRef] [PubMed]
- Badre, D. Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes. Trends Cognit. Sci. 2008, 12, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Blumenfeld, R.S.; Parks, C.M.; Yonelinas, A.P.; Ranganath, C. Putting the pieces together: The role of dorsolateral prefrontal cortex in relational memory encoding. J. Cognit. Neurosci. 2011, 23, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Ranganath, C.; Heller, A.S.; Wilding, E.L. Dissociable correlates of two classes of retrieval processing in prefrontal cortex. Neuroimage 2007, 35, 1663–1673. [Google Scholar] [CrossRef] [PubMed]
- Henson, R.N.; Rugg, M.D.; Shallice, T.; Dolan, R.J. Confidence in recognition memory for words: Dissociating right prefrontal roles in episodic retrieval. J. Cognit. Neurosci. 2000, 12, 913–923. [Google Scholar] [CrossRef]
- Hoffman, P.; Jefferies, E.; Ralph, M.A.L. Ventrolateral prefrontal cortex plays an executive regulation role in comprehension of abstract words: Convergent neuropsychological and repetitive tms evidence. J. Neurosci. 2010, 30, 15450–15456. [Google Scholar] [CrossRef] [PubMed]
- Thompson-Schill, S.L.; D’Esposito, M.; Aguirre, G.K.; Farah, M.J. Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation. Proc. Natl. Acad. Sci. USA 1997, 94, 14792–14797. [Google Scholar] [CrossRef] [PubMed]
- Thompson-Schill, S.L.; Swick, D.; Farah, M.J.; D’Esposito, M.; Kan, I.P.; Knight, R.T. Verb generation in patients with focal frontal lesions: A neuropsychological test of neuroimaging findings. Proc. Natl. Acad. Sci. USA 1998, 95, 15855–15860. [Google Scholar] [CrossRef] [PubMed]
- Kurczek, J.; Brown-Schmidt, S.; Duff, M. Hippocampal contributions to language: Evidence of referential processing deficits in amnesia. J. Exp. Psychol. Gen. 2013, 142, 1346–1354. [Google Scholar] [CrossRef] [PubMed]
- Kurczek, J.; Duff, M.C. Cohesion, coherence, and declarative memory: Discourse patterns in individuals with hippocampal amnesia. Aphasiology 2011, 25, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.E.; Power, J.D.; Bruss, J.; Denburg, N.L.; Waldron, E.J.; Sun, H.; Petersen, S.E.; Tranel, D. Network measures predict neuropsychological outcome after brain injury. Proc. Natl. Acad. Sci. USA 2014, 111, 14247–14252. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.E.; Denburg, N.L.; Power, J.D.; Bruss, J.; Waldron, E.J.; Sun, H.; Petersen, S.E.; Tranel, D. Brain network theory can predict whether neuropsychological outcomes will differ from clinical expectations. Arch. Clin. Neuropsychol. Off. J. Natl. Acad. Neuropsychol. 2017, 32, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Snyder, H.R.; Miyake, A.; Hankin, B.L. Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Front. Psychol. 2015, 6, 328. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubin, R.D.; Schwarb, H.; Lucas, H.D.; Dulas, M.R.; Cohen, N.J. Dynamic Hippocampal and Prefrontal Contributions to Memory Processes and Representations Blur the Boundaries of Traditional Cognitive Domains. Brain Sci. 2017, 7, 82. https://doi.org/10.3390/brainsci7070082
Rubin RD, Schwarb H, Lucas HD, Dulas MR, Cohen NJ. Dynamic Hippocampal and Prefrontal Contributions to Memory Processes and Representations Blur the Boundaries of Traditional Cognitive Domains. Brain Sciences. 2017; 7(7):82. https://doi.org/10.3390/brainsci7070082
Chicago/Turabian StyleRubin, Rachael D., Hillary Schwarb, Heather D. Lucas, Michael R. Dulas, and Neal J. Cohen. 2017. "Dynamic Hippocampal and Prefrontal Contributions to Memory Processes and Representations Blur the Boundaries of Traditional Cognitive Domains" Brain Sciences 7, no. 7: 82. https://doi.org/10.3390/brainsci7070082
APA StyleRubin, R. D., Schwarb, H., Lucas, H. D., Dulas, M. R., & Cohen, N. J. (2017). Dynamic Hippocampal and Prefrontal Contributions to Memory Processes and Representations Blur the Boundaries of Traditional Cognitive Domains. Brain Sciences, 7(7), 82. https://doi.org/10.3390/brainsci7070082