Identification of Urinary Polyphenol Metabolite Patterns Associated with Polyphenol-Rich Food Intake in Adults from Four European Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Dietary Assessment
2.3. Urinary Polyphenol Assessment
2.4. Statistical Analyses
- (1)
- Selecting optimal subsets of 34 polyphenol metabolites to explain intakes of specific polyphenol-rich food groups using two different variable selection methods: (i) variable importance in projection based on reduced rank regression (called the RRR-VIP method) [28] and (ii) least absolute shrinkage and selection operator (LASSO) regression [29].
- (2)
- Identifying patterns of selected polyphenol metabolites (as predictor variables), and maximizing the explained variability of polyphenol-rich food group intakes (as response variables) through RRR analysis.
- (3)
- Evaluating the performance of the RRR models for the polyphenol metabolite patterns to discriminate between consumers and non-consumers through internal two-fold cross-validation analyses. This was achieved through splitting the data into two equal-sized subsets (a training and a test set) and calculating (i) RRR scores in the test set using factor weights derived from RRR analysis of the training set; and (ii) Pearson correlation coefficients of RRR scores with intakes and area under the receiver operating characteristic curves (ROC AUCs) for the RRR scores of the test set.
3. Results
3.1. General Characteristics of the Study Population
3.2. Correlations between Individual Polyphenol Metabolites and Polyphenol-Rich Food Groups
3.3. Selection of Polyphenol Metabolites Using Variable Selection Methods
3.4. Identification of Polyphenol Metabolite Patterns Using Reduced Rank Regression
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Freedman, L.S.; Potischman, N.; Kipnis, V.; Midthune, D.; Schatzkin, A.; Thompson, F.E.; Troiano, R.P.; Prentice, R.; Patterson, R.; Carroll, R.; et al. A comparison of two dietary instruments for evaluating the fat-breast cancer relationship. Int. J. Epidemiol. 2006, 35, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Kipnis, V.; Midthune, D.; Freedman, L.; Bingham, S.; Day, N.E.; Riboli, E.; Ferrari, P.; Carroll, R.J. Bias in dietary-report instruments and its implications for nutritional epidemiology. Public Health Nutr. 2002, 5, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, P.; Roddam, A.; Fahey, M.T.; Jenab, M.; Bamia, C.; Ocké, M.; Amiano, P.; Hjartåker, A.; Biessy, C.; Rinaldi, S.; et al. A bivariate measurement error model for nitrogen and potassium intakes to evaluate the performance of regression calibration in the European Prospective Investigation into Cancer and Nutrition study. Eur. J. Clin. Nutr. 2009, 63, S179–S187. [Google Scholar] [CrossRef] [PubMed]
- Jenab, M.; Slimani, N.; Bictash, M.; Ferrari, P.; Bingham, S.A. Biomarkers in nutritional epidemiology: Applications, needs and new horizons. Hum. Genet. 2009, 125, 507–525. [Google Scholar] [CrossRef] [PubMed]
- Kuhnle, G.G.C. Nutritional biomarkers for objective dietary assessment. J. Sci. Food Agric. 2012, 92, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Potischman, N.; Freudenheim, J.L. Biomarkers of nutritional exposure and nutritional status: An overview. J. Nutr. 2003, 133, 873S–874S. [Google Scholar] [PubMed]
- O’Gorman, A.; Gibbons, H.; Brennan, L. Metabolomics in the identification of biomarkers of dietary intake. Comput. Struct. Biotechnol. J. 2013, 4, e201301004. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Brennan, L.; Manach, C.; Andres-Lacueva, C.; Dragsted, L.O.; Draper, J.; Rappaport, S.M.; van der Hooft, J.J.J.; Wishart, D.S. The food metabolome: A window over dietary exposure. Am. J. Clin. Nutr. 2014, 99, 1286–1308. [Google Scholar] [CrossRef] [PubMed]
- Altorf-van der Kuil, W.; Brink, E.J.; Boetje, M.; Siebelink, E.; Bijlsma, S.; Engberink, M.F.; van’t Veer, P.; Tomé, D.; Bakker, S.J.L.; van Baak, M.A. Identification of biomarkers for intake of protein from meat, dairy products and grains: A controlled dietary intervention study. Br. J. Nutr. 2013, 110, 810–822. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Gordon, M.H.; Alimbetov, D.; Chong, M.F.-F.; George, T.W.; Spencer, J.P.E.; Kennedy, O.B.; Tuohy, K.; Minihane, A.-M.; Lovegrove, J.A. A novel combined biomarker including plasma carotenoids, vitamin C, and ferric reducing antioxidant power is more strongly associated with fruit and vegetable intake than the individual components. J. Nutr. 2014, 144, 1866–1872. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: An application of the phenol-explorer database. J. Agric. Food Chem. 2010, 58, 4959–4969. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, R.M.; Naidoo, N.; Landberg, R. Dietary flavonoids and the development of type 2 diabetes and cardiovascular diseases: Review of recent findings. Curr. Opin. Lipidol. 2013, 24, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary Flavonoid and Lignan Intake and Mortality in Prospective Cohort Studies: Systematic Review and Dose-Response Meta-Analysis. Am. J. Epidemiol. 2017, 185, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Hubert, J.; Hooper, L.; Cassidy, A.; Manach, C.; Williamson, G.; Scalbert, A. Urinary metabolites as biomarkers of polyphenol intake in humans: A systematic review. Am. J. Clin. Nutr. 2010, 92, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Ito, H.; Gonthier, M.-P.; Manach, C.; Morand, C.; Mennen, L.; Rémésy, C.; Scalbert, A. Polyphenol levels in human urine after intake of six different polyphenol-rich beverages. Br. J. Nutr. 2005, 94, 500–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mennen, L.I.; Sapinho, D.; Ito, H.; Bertrais, S.; Galan, P.; Hercberg, S.; Scalbert, A. Urinary flavonoids and phenolic acids as biomarkers of intake for polyphenol-rich foods. Br. J. Nutr. 2006, 96, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Edmands, W.M.; Ferrari, P.; Rothwell, J.A.; Rinaldi, S.; Slimani, N.; Barupal, D.K.; Biessy, C.; Jenab, M.; Clavel-Chapelon, F.; Fagherazzi, G.; et al. Polyphenol metabolome in human urine and its association with intake of polyphenol-rich foods across European countries. Am. J. Clin. Nutr. 2015, 102, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Achaintre, D.; Rothwell, J.A.; Rinaldi, S.; Assi, N.; Ferrari, P.; Leitzmann, M.; Boutron-Ruault, M.-C.; Fagherazzi, G.; Auffret, A.; et al. Urinary excretions of 34 dietary polyphenols and their associations with lifestyle factors in the EPIC cohort study. Sci. Rep. 2016, 6, 26905. [Google Scholar] [CrossRef] [PubMed]
- Riboli, E. The European Prospective Investigation into Cancer and Nutrition (EPIC): Plans and progress. J. Nutr. 2001, 131, S170–S175. [Google Scholar]
- Slimani, N.; Kaaks, R.; Ferrari, P.; Casagrande, C.; Clavel-Chapelon, F.; Lotze, G.; Kroke, A.; Trichopoulos, D.; Trichopoulou, A.; Lauria, C.; et al. European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study: Rationale, design and population characteristics. Public Health Nutr. 2002, 5, 1125. [Google Scholar] [CrossRef] [PubMed]
- Slimani, N.; Bingham, S.; Runswick, S.; Ferrari, P.; Day, N.E.; Welch, A.A.; Key, T.J.; Miller, A.B.; Boeing, H.; Sieri, S.; et al. Group level validation of protein intakes estimated by 24-h diet recall and dietary questionnaires against 24-h urinary nitrogen in the European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study. Cancer Epidemiol. Biomark. Prev. 2003, 12, 784–795. [Google Scholar]
- Slimani, N.; Fahey, M.; Welch, A.A.; Wirfält, E.; Stripp, C.; Bergström, E.; Linseisen, J.; Schulze, M.B.; Bamia, C.; Chloptsios, Y.; et al. Diversity of dietary patterns observed in the European Prospective Investigation into Cancer and Nutrition (EPIC) project. Public Health Nutr. 2002, 5, 1311–1328. [Google Scholar] [CrossRef] [PubMed]
- Slimani, N.; Casagrande, C.; Nicolas, G.; Freisling, H.; Huybrechts, I.; Ocké, M.C.; Niekerk, E.M.; van Rossum, C.; Bellemans, M.; De Maeyer, M.; et al. The standardized computerized 24-h dietary recall method EPIC-Soft adapted for pan-European dietary monitoring. Eur. J. Clin. Nutr. 2011, 65, S5–S15. [Google Scholar] [CrossRef] [PubMed]
- Achaintre, D.; Buleté, A.; Cren-Olivé, C.; Li, L.; Rinaldi, S.; Scalbert, A. Differential Isotope Labeling of 38 Dietary Polyphenols and Their Quantification in Urine by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry. Anal. Chem. 2016, 88, 2637–2644. [Google Scholar] [CrossRef] [PubMed]
- Dempster, A.P. Maximum Likelihood from Incomplete Data via the EM Algorithm on JSTOR. Available online: http://www.jstor.org/stable/2984875?seq=1#page_scan_tab_contents (accessed on 11 December 2015).
- Mehmood, T.; Martens, H.; Sæbø, S.; Warringer, J.; Snipen, L. A Partial Least Squares based algorithm for parsimonious variable selection. Algorithms Mol. Biol. 2011, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Tibshirani, R. Regression shrinkage and selection via the lasso: A retrospective. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 273–282. [Google Scholar] [CrossRef]
- Chong, I.-G.; Jun, C.-H. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 2005, 78, 103–112. [Google Scholar] [CrossRef]
- Zamora-Ros, R.; Knaze, V.; Rothwell, J.A.; Hémon, B.; Moskal, A.; Overvad, K.; Tjønneland, A.; Kyrø, C.; Fagherazzi, G.; Boutron-Ruault, M.C.; et al. Dietary polyphenol intake in europe: The european prospective investigation into cancer and nutrition (EPIC) study. Eur. J. Nutr. 2016, 55, 1359–1375. [Google Scholar] [CrossRef] [PubMed]
- Spencer, J.P.E.; Abd El Mohsen, M.M.; Minihane, A.-M.; Mathers, J.C. Biomarkers of the intake of dietary polyphenols: Strengths, limitations and application in nutrition research. Br. J. Nutr. 2008, 99, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Touillaud, M.; Rothwell, J.A.; Romieu, I.; Scalbert, A. Measuring exposure to the polyphenol metabolome in observational epidemiologic studies: Current tools and applications and their limits. Am. J. Clin. Nutr. 2014, 100, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Noroozi, M.; Burns, J.; Crozier, A.; Kelly, I.E.; Lean, M.E. Prediction of dietary flavonol consumption from fasting plasma concentration or urinary excretion. Eur. J. Clin. Nutr. 2000, 54, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Erlund, I.; Silaste, M.L.; Alfthan, G.; Rantala, M.; Kesäniemi, Y.A.; Aro, A. Plasma concentrations of the flavonoids hesperetin, naringenin and quercetin in human subjects following their habitual diets, and diets high or low in fruit and vegetables. Eur. J. Clin. Nutr. 2002, 56, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.E.; Freese, R.; Kleemola, P.; Mutanen, M. Flavonoids in human urine as biomarkers for intake of fruits and vegetables. Cancer Epidemiol. Biomark. Prev. 2002, 11, 459–466. [Google Scholar]
- Krogholm, K.S.; Haraldsdóttir, J.; Knuthsen, P.; Rasmussen, S.E. Urinary total flavonoid excretion but not 4-pyridoxic acid or potassium can be used as a biomarker for the intake of fruits and vegetables. J. Nutr. 2004, 134, 445–451. [Google Scholar] [PubMed]
- Hodgson, J.M.; Chan, S.Y.; Puddey, I.B.; Devine, A.; Wattanapenpaiboon, N.; Wahlqvist, M.L.; Lukito, W.; Burke, V.; Ward, N.C.; Prince, R.L.; et al. Phenolic acid metabolites as biomarkers for tea- and coffee-derived polyphenol exposure in human subjects. Br. J. Nutr. 2004, 91, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ros, R.; Urpí-Sardà, M.; Lamuela-Raventós, R.M.; Estruch, R.; Martínez-González, M.A.; Bulló, M.; Arós, F.; Cherubini, A.; Andres-Lacueva, C. Resveratrol metabolites in urine as a biomarker of wine intake in free-living subjects: The PREDIMED Study. Free Radic. Biol. Med. 2009, 46, 1562–1566. [Google Scholar] [CrossRef] [PubMed]
- Mennen, L.I.; Sapinho, D.; Ito, H.; Galan, P.; Hercberg, S.; Scalbert, A. Urinary excretion of 13 dietary flavonoids and phenolic acids in free-living healthy subjects—Variability and possible use as biomarkers of polyphenol intake. Eur. J. Clin. Nutr. 2008, 62, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Izenman, A.J. Reduced-rank regression for the multivariate linear model. J. Multivar. Anal. 1975, 5, 248–264. [Google Scholar] [CrossRef]
- Hoffmann, K. Application of a New Statistical Method to Derive Dietary Patterns in Nutritional Epidemiology. Am. J. Epidemiol. 2004, 159, 935–944. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.; Kawakami, M.; Robert, M.; Soga, T.; Tomita, M. Bioinformatics Tools for Mass Spectroscopy-Based Metabolomic Data Processing and Analysis. Curr. Bioinform. 2012, 7, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Boccard, J.; Veuthey, J.-L.; Rudaz, S. Knowledge discovery in metabolomics: An overview of MS data handling. J. Sep. Sci. 2010, 33, 290–304. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P. E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Xu, A.; Krul, C.; Venema, K.; Liu, Y.; Niu, Y.; Lu, J.; Bensoussan, L.; Seeram, N.P.; Heber, D.; et al. Of the Major Phenolic Acids Formed during Human Microbial Fermentation of Tea, Citrus, and Soy Flavonoid Supplements, Only 3,4-Dihydroxyphenylacetic Acid Has Antiproliferative Activity. J. Nutr. 2006, 136, 52–57. [Google Scholar] [PubMed]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database Oxf. 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Stalmach, A.; Calani, L.; Crozier, A. Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols. Nutrients 2010, 2, 820–833. [Google Scholar] [CrossRef] [PubMed]
- Gonthier, M.-P.; Remesy, C.; Scalbert, A.; Cheynier, V.; Souquet, J.-M.; Poutanen, K.; Aura, A.-M. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomed. Pharmacother. 2006, 60, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.A.; Urpi-Sarda, M.; Boto-Ordoñez, M.; Llorach, R.; Farran-Codina, A.; Barupal, D.K.; Neveu, V.; Manach, C.; Andres-Lacueva, C.; Scalbert, A. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database. Mol. Nutr. Food Res. 2016, 60, 203–211. [Google Scholar] [CrossRef] [PubMed]
Total | Men | Women | p b | |
---|---|---|---|---|
N (%) | 475 (100) | 198 (41.7) | 277 (58.3) | |
Age (years) | 53.9 (8.5) | 55.4 (8.4) | 52.9 (8.4) | 0.017 |
BMI (kg/m2) | 26.0 (4.3) | 26.8 (3.5) | 25.5 (4.7) | 0.059 |
Energy intake (kcal/day) | 2200.0 (785.5) | 2562.7 (830.9) | 1940.8 (636.4) | <0.0001 |
Alcohol intake (g/day) | 15.5 (21.1) | 23.5 (26.3) | 9.7 (13.8) | <0.0001 |
Smoking status (%) | 0.102 | |||
Never | 50.7 | 35.9 | 61.4 | |
Former | 27.2 | 38.4 | 19.1 | |
Current | 19.4 | 23.2 | 16.6 | |
Unknown | 2.7 | 2.5 | 2.9 | |
Physical activity (%) | 0.712 | |||
Inactive | 26.3 | 24.8 | 27.4 | |
Moderately inactive | 40.0 | 39.9 | 40.1 | |
Moderately active | 21.3 | 21.2 | 21.3 | |
Active | 12.4 | 14.1 | 11.2 | |
Diabetes (%) c | 2.5 | 3.5 | 1.8 | 0.213 |
Hyperlipidemia (%) c | 27.2 | 33.3 | 22.7 | 0.087 |
Hypertension (%) c | 23.6 | 27.8 | 20.7 | 0.720 |
Polyphenols (n = 34) | Food Groups (% Consumers) | ||||||
---|---|---|---|---|---|---|---|
Citrus Fruits (38.9%) | Apple & Pear (47.6%) | Olives (9.3%) | Coffee (86.3%) | Tea (24.6%) | All Wine (41.9%) | Red Wine (25.5%) | |
Protocatechuic acid | 0.020 | 0.018 | 0.055 | 0.373 | −0.116 | 0.119 | 0.109 |
Hydroxytyrosol | 0.020 | 0.010 | 0.360 | 0.010 | 0.100 | 0.430 | 0.336 |
3,5-Dihydroxybenzoic acid | 0.080 | 0.023 | 0.034 | −0.093 | 0.130 | −0.016 | −0.027 |
3,4-Dihydroxyphenylacetic acid | 0.174 | 0.134 | 0.312 | 0.028 | 0.053 | 0.134 | 0.116 |
Genistein | 0.076 | 0.018 | −0.027 | −0.093 | 0.067 | −0.072 | −0.047 |
Apigenin | 0.088 | 0.055 | 0.014 | −0.062 | −0.027 | −0.081 | −0.064 |
3,4-Dihydroxyphenylpropionic acid | 0.062 | 0.086 | 0.012 | 0.403 | −0.159 | 0.038 | 0.025 |
3,5-Dihydroxyphenylpropionic acid | 0.077 | 0.022 | 0.020 | −0.043 | 0.142 | 0.050 | 0.055 |
3-Hydroxybenzoic acid | 0.029 | 0.024 | −0.013 | 0.162 | 0.077 | 0.052 | 0.091 |
4-Hydroxybenzoic acid | 0.191 | −0.031 | 0.071 | 0.094 | 0.008 | 0.009 | 0.010 |
Tyrosol | −0.079 | −0.084 | 0.117 | 0.045 | 0.037 | 0.429 | 0.317 |
3-Hydroxyphenylacetic acid | 0.121 | 0.141 | 0.058 | 0.027 | 0.034 | 0.060 | 0.063 |
4-Hydroxyphenylacetic acid | −0.014 | −0.060 | 0.054 | 0.012 | −0.011 | 0.220 | 0.164 |
m-Coumaric acid | 0.054 | −0.022 | 0.001 | 0.294 | −0.092 | 0.113 | 0.128 |
p-Coumaric acid | 0.011 | 0.088 | 0.126 | 0.104 | 0.061 | 0.270 | 0.212 |
Vanillic acid | −0.014 | 0.000 | 0.009 | 0.107 | −0.065 | −0.017 | 0.024 |
Naringenin | 0.498 | 0.070 | 0.064 | 0.036 | −0.018 | 0.025 | −0.043 |
Phloretin | 0.151 | 0.303 | −0.009 | 0.000 | −0.005 | −0.027 | −0.057 |
Kaempferol | 0.279 | 0.085 | 0.036 | 0.003 | 0.083 | −0.002 | −0.021 |
Epicatechin | 0.020 | 0.233 | −0.015 | −0.126 | 0.193 | 0.135 | 0.123 |
Catechin | −0.069 | 0.003 | 0.018 | −0.098 | 0.110 | 0.280 | 0.280 |
Hesperetin | 0.535 | 0.056 | 0.023 | 0.037 | −0.061 | 0.004 | −0.003 |
Homovanillic acid | 0.126 | 0.117 | 0.241 | −0.081 | 0.059 | 0.065 | 0.069 |
Isorhamnetin | 0.032 | 0.070 | 0.036 | −0.055 | 0.074 | 0.047 | 0.078 |
Ferulic acid | 0.170 | 0.053 | 0.028 | 0.422 | −0.113 | 0.036 | 0.003 |
Resveratrol | 0.028 | −0.049 | 0.007 | 0.012 | −0.007 | 0.409 | 0.457 |
Quercetin | 0.190 | 0.083 | −0.008 | −0.118 | 0.133 | 0.126 | 0.141 |
Caffeic acid | 0.068 | 0.092 | 0.049 | 0.487 | −0.121 | 0.119 | 0.084 |
Equol | −0.060 | −0.068 | −0.040 | −0.099 | 0.049 | 0.009 | 0.060 |
Daidzein | 0.043 | −0.037 | −0.008 | −0.115 | 0.089 | −0.023 | −0.029 |
Enterolactone | 0.050 | 0.045 | 0.105 | 0.019 | 0.042 | 0.077 | 0.032 |
Enterodiol | 0.067 | 0.000 | 0.053 | −0.015 | 0.016 | 0.018 | 0.027 |
Gallic acid | 0.055 | 0.064 | 0.039 | −0.125 | 0.316 | 0.344 | 0.380 |
Gallic acid ethyl ester | −0.016 | −0.030 | 0.032 | −0.009 | 0.058 | 0.508 | 0.654 |
Food Groups | RRR-VIP | LASSO | ||
---|---|---|---|---|
Polyphenol Metabolites | VIP | Polyphenol Metabolites | Coefficients | |
Citrus fruits | Naringenin | 2.876 | Hesperetin | 0.851 |
Hesperetin | 2.701 | Naringenin | 0.510 | |
3,4-Dihydroxyphenylacetic acid | 2.552 | 3,4-Dihydroxyphenylacetic acid | 0.091 | |
Resveratrol | 1.207 | 3-Hydroxyphenylacetic acid | 0.086 | |
3,4-Dihydroxyphenylpropionic acid | 1.007 | Vanillic acid | −0.009 | |
m-Coumaric acid | 0.970 | Apigenin | −0.035 | |
Genistein | 0.927 | Tyrosol | −0.037 | |
Homovanillic acid | 0.894 | Catechin | −0.046 | |
Catechin | 0.888 | 4-Hydroxyphenylacetic acid | −0.089 | |
Daidzein | 0.880 | |||
Hydroxytyrosol | 0.855 | |||
Apples & Pears | Phloretin | 2.666 | Phloretin | 0.598 |
Epicatechin | 2.463 | Epicatechin | 0.199 | |
Protocatechuic acid | 2.047 | |||
Gallic acid ethyl ester | 1.426 | |||
3,4-Dihydroxyphenylpropionic acid | 1.254 | |||
Enterolactone | 1.163 | |||
Catechin | 1.119 | |||
3,4-Dihydroxyphenylacetic acid | 0.914 | |||
Homovanillic acid | 0.913 | |||
Apigenin | 0.889 | |||
Daidzein | 0.883 | |||
Olives | Hydroxytyrosol | 4.866 | Hydroxytyrosol | 0.313 |
Tyrosol | 1.810 | 3,4-Dihydroxyphenylacetic acid | 0.099 | |
Quercetin | 1.382 | Catechin | −0.003 | |
3,4-Dihydroxyphenylacetic acid | 0.945 | m-Coumaric acid | −0.006 | |
Gallic acid ethyl ester | 0.863 | Epicatechin | −0.011 | |
3-Hydroxybenzoic acid | −0.014 | |||
Gallic acid ethyl ester | −0.028 | |||
Resveratrol | −0.041 | |||
Tyrosol | −0.054 | |||
Quercetin | −0.078 | |||
Coffee | Caffeic acid | 3.559 | Caffeic acid | 0.853 |
Ferulic acid | 1.906 | Ferulic acid | 0.227 | |
3,4-Dihydroxyphenylacetic acid | 1.690 | Protocatechuic acid | 0.075 | |
Gallic acid | 1.493 | 3,4-Dihydroxyphenylpropionic acid | 0.071 | |
Apigenin | 1.270 | Homovanillic acid | −0.013 | |
Quercetin | 1.261 | Catechin | −0.016 | |
Homovanillic acid | 1.149 | 3,5-Dihydroxyphenylpropionic acid | −0.027 | |
Protocatechuic acid | 1.141 | 4-Hydroxyphenylacetic acid | −0.041 | |
m-Coumaric acid | 1.037 | Equol | −0.047 | |
Hydroxytyrosol | 0.879 | 3,5-Dihydroxybenzoic acid | −0.069 | |
Daidzein | 0.872 | Daidzein | −0.076 | |
Epicatechin | −0.109 | |||
Gallic acid | −0.130 | |||
Apigenin | −0.163 | |||
Quercetin | −0.263 | |||
Tea | Gallic acid | 3.265 | Gallic acid | 0.977 |
Hydroxytyrosol | 2.084 | 3-Hydroxybenzoic acid | 0.328 | |
Protocatechuic acid | 1.813 | Hydroxytyrosol | 0.255 | |
3,4-Dihydroxyphenylacetic acid | 1.520 | 3,5-Dihydroxyphenylpropionic acid | 0.233 | |
3-Hydroxybenzoic acid | 1.462 | Kaempferol | 0.177 | |
m-Coumaric acid | 1.379 | Daidzein | 0.140 | |
3,5-Dihydroxyphenylpropionic acid | 0.969 | 4-Hydroxybenzoic acid | 0.072 | |
Resveratrol | 0.959 | Genistein | 0.057 | |
Gallic acid ethyl ester | 0.857 | p-Coumaric acid | 0.044 | |
Epicatechin | 0.037 | |||
Quercetin | 0.021 | |||
Isorhamnetin | 0.018 | |||
Enterodiol | 0.006 | |||
Ferulic acid | −0.001 | |||
Apigenin | −0.017 | |||
Tyrosol | −0.037 | |||
3,4-Dihydroxyphenylpropionic acid | −0.109 | |||
3,4-Dihydroxyphenylacetic acid | −0.112 | |||
Gallic acid ethyl ester | −0.119 | |||
3-Hydroxyphenylacetic acid | −0.133 | |||
Phloretin | −0.145 | |||
Hesperetin | −0.148 | |||
4-Hydroxyphenylacetic acid | −0.204 | |||
m-Coumaric acid | −0.260 | |||
Resveratrol | −0.321 | |||
Protocatechuic acid | −0.452 | |||
All wine | Hydroxytyrosol | 3.547 | Gallic acid ethyl ester | 0.808 |
Gallic acid ethyl ester | 3.058 | Hydroxytyrosol | 0.579 | |
Homovanillic acid | 1.531 | Tyrosol | 0.198 | |
3-Hydroxybenzoic acid | 1.201 | Gallic acid | 0.068 | |
Naringenin | 1.081 | p-Coumaric acid | 0.060 | |
3,4-Dihydroxyphenylpropionic acid | 1.010 | Enterolactone | 0.048 | |
3,4-Dihydroxyphenylacetic acid | 0.909 | Catechin | 0.023 | |
Apigenin | −0.063 | |||
3-Hydroxybenzoic acid | −0.089 | |||
Vanillic acid | −0.097 | |||
Homovanillic acid | −0.251 | |||
Red wine | Gallic acid ethyl ester | 5.388 | Gallic acid ethyl ester | 1.333 |
Resveratrol | 1.315 |
Food Groups a | Selected PPs b | 24-HDR | DQ | ||||
---|---|---|---|---|---|---|---|
Consumers (%) | r c | ROC AUC d (95% CI) | Consumers (%) | r c | ROC AUC d (95% CI) | ||
Citrus fruit | Single PP (Hesperetin) | 40% | 0.538 | 81.4% (75.9–86.8) | 96% | 0.124 | 66.2% (48.8–83.6) |
PPs by RRR-VIP (n = 11) | 0.543 | 81.7% (76.2–87.2) | 0.139 | 71.6% (57.9–85.2) | |||
PPs by LASSO (n = 11) | 0.539 | 81.8% (76.1–87.5) | 0.163 | 69.8% (54.9–84.7) | |||
Apples & Pears | Single PP (Phloretin) | 48% | 0.322 | 74.2% (68.0–80.5) | 96% | 0.183 | 70.6% (54.0–87.2) |
PPs by RRR-VIP (n = 10) | 0.359 | 73.5% (67.2–79.8) | 0.242 | 77.7% (61.5–93.9) | |||
PPs by LASSO (n = 2) | 0.356 | 74.3% (68.0–80.6) | 0.201 | 68.5% (51.7–85.3) | |||
Olives | Single PP (Hydroxytyrosol) | 8% | 0.287 | 79.6% (69.7–89.5) | 26% | 0.141 | 64.8% (56.7–72.9) |
PPs by RRR-VIP (n = 5) | 0.351 | 82.2% (72.9–91.6) | 0.131 | 64.1% (55.8–72.4) | |||
PPs by LASSO (n = 10) | 0.348 | 81.0% (70.9–91.2) | 0.125 | 64.2% (56.0–72.5) | |||
Coffee | Single PP (Caffeic acid) | 86% | 0.416 | 85.8% (77.7–93.8) | 94% | 0.383 | 80.9% (68.9–92.8) |
PPs by RRR-VIP (n = 11) | 0.505 | 89.1% (82.9–95.4) | 0.392 | 82.7% (72.2–93.2) | |||
PPs by LASSO (n = 15) | 0.510 | 89.6% (83.6–95.6) | 0.417 | 83.4% (73.0–93.7) | |||
Tea | Single PP (Gallic acid) | 25% | 0.304 | 70.5% (62.8–78.2) | 64% | 0.151 | 59.8% (52.2–67.5) |
PPs by RRR-VIP (n = 9) | 0.412 | 73.9% (66.4–81.4) | 0.289 | 65.0% (57.9–72.1) | |||
PPs by LASSO (n = 26) | 0.370 | 72.4% (65.0–79.8) | 0.210 | 63.2% (55.9–70.5) | |||
All wine | Single PP (Gallic acid ethyl ester) | 37% | 0.514 | 76.7% (70.1–83.4) | 85% | 0.406 | 74.8% (66.4–83.2) |
PPs by RRR-VIP (n = 7) | 0.529 | 77.8% (71.3–84.4) | 0.423 | 76.1% (68.1–84.1) | |||
PPs by LASSO (n = 11) | 0.531 | 77.1% (70.8–83.4) | 0.433 | 76.7% (68.4–84.9) | |||
Red Wine | Single PP (Gallic acid ethyl ester) | 23% | 0.656 | 89.1% (83.6–94.7) | 24% | 0.263 | 67.8% (59.1–76.4) |
PPs by RRR-VIP (n = 2) | 0.654 | 89.1% (83.5–94.7) | 0.263 | 67.8% (59.1–76.4) | |||
PPs by LASSO (n = 1) | 0.656 | 89.1% (83.6–94.7) | 0.263 | 67.8% (59.1–76.4) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noh, H.; Freisling, H.; Assi, N.; Zamora-Ros, R.; Achaintre, D.; Affret, A.; Mancini, F.; Boutron-Ruault, M.-C.; Flögel, A.; Boeing, H.; et al. Identification of Urinary Polyphenol Metabolite Patterns Associated with Polyphenol-Rich Food Intake in Adults from Four European Countries. Nutrients 2017, 9, 796. https://doi.org/10.3390/nu9080796
Noh H, Freisling H, Assi N, Zamora-Ros R, Achaintre D, Affret A, Mancini F, Boutron-Ruault M-C, Flögel A, Boeing H, et al. Identification of Urinary Polyphenol Metabolite Patterns Associated with Polyphenol-Rich Food Intake in Adults from Four European Countries. Nutrients. 2017; 9(8):796. https://doi.org/10.3390/nu9080796
Chicago/Turabian StyleNoh, Hwayoung, Heinz Freisling, Nada Assi, Raul Zamora-Ros, David Achaintre, Aurélie Affret, Francesca Mancini, Marie-Christine Boutron-Ruault, Anna Flögel, Heiner Boeing, and et al. 2017. "Identification of Urinary Polyphenol Metabolite Patterns Associated with Polyphenol-Rich Food Intake in Adults from Four European Countries" Nutrients 9, no. 8: 796. https://doi.org/10.3390/nu9080796
APA StyleNoh, H., Freisling, H., Assi, N., Zamora-Ros, R., Achaintre, D., Affret, A., Mancini, F., Boutron-Ruault, M. -C., Flögel, A., Boeing, H., Kühn, T., Schübel, R., Trichopoulou, A., Naska, A., Kritikou, M., Palli, D., Pala, V., Tumino, R., Ricceri, F., ... Ferrari, P. (2017). Identification of Urinary Polyphenol Metabolite Patterns Associated with Polyphenol-Rich Food Intake in Adults from Four European Countries. Nutrients, 9(8), 796. https://doi.org/10.3390/nu9080796